/* Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Original Author: Shay Gal-on */ #include #include #include "coremark.h" #if CALLGRIND_RUN #include #endif #include #include #include #include #include #include #include #if (MEM_METHOD==MEM_MALLOC) #include /* Function: portable_malloc Provide malloc() functionality in a platform specific way. */ void *portable_malloc(size_t size) { return malloc(size); } /* Function: portable_free Provide free() functionality in a platform specific way. */ void portable_free(void *p) { free(p); } #else void *portable_malloc(size_t size) { return NULL; } void portable_free(void *p) { p=NULL; } #endif #if (SEED_METHOD==SEED_VOLATILE) #if VALIDATION_RUN volatile ee_s32 seed1_volatile=0x3415; volatile ee_s32 seed2_volatile=0x3415; volatile ee_s32 seed3_volatile=0x66; #endif #if PERFORMANCE_RUN volatile ee_s32 seed1_volatile=0x0; volatile ee_s32 seed2_volatile=0x0; volatile ee_s32 seed3_volatile=0x66; #endif #if PROFILE_RUN volatile ee_s32 seed1_volatile=0x8; volatile ee_s32 seed2_volatile=0x8; volatile ee_s32 seed3_volatile=0x8; #endif volatile ee_s32 seed4_volatile=ITERATIONS; volatile ee_s32 seed5_volatile=0; #endif /* Porting: Timing functions How to capture time and convert to seconds must be ported to whatever is supported by the platform. e.g. Read value from on board RTC, read value from cpu clock cycles performance counter etc. Sample implementation for standard time.h and windows.h definitions included. */ /* Define: TIMER_RES_DIVIDER Divider to trade off timer resolution and total time that can be measured. Use lower values to increase resolution, but make sure that overflow does not occur. If there are issues with the return value overflowing, increase this value. */ #if USE_CLOCK #define NSECS_PER_SEC CLOCKS_PER_SEC #define EE_TIMER_TICKER_RATE 1000 #define CORETIMETYPE clock_t #define GETMYTIME(_t) (*_t=clock()) #define MYTIMEDIFF(fin,ini) ((fin)-(ini)) #define TIMER_RES_DIVIDER 1 #define SAMPLE_TIME_IMPLEMENTATION 1 #elif defined(_MSC_VER) #define NSECS_PER_SEC 10000000 #define EE_TIMER_TICKER_RATE 1000 #define CORETIMETYPE FILETIME #define GETMYTIME(_t) GetSystemTimeAsFileTime(_t) #define MYTIMEDIFF(fin,ini) (((*(__int64*)&fin)-(*(__int64*)&ini))/TIMER_RES_DIVIDER) /* setting to millisces resolution by default with MSDEV */ #ifndef TIMER_RES_DIVIDER #define TIMER_RES_DIVIDER 1000 #endif #define SAMPLE_TIME_IMPLEMENTATION 1 #elif HAS_TIME_H #define NSECS_PER_SEC 1000000000 #define EE_TIMER_TICKER_RATE 1000 #define CORETIMETYPE struct timespec #define GETMYTIME(_t) clock_gettime(CLOCK_REALTIME,_t) #define MYTIMEDIFF(fin,ini) ((fin.tv_sec-ini.tv_sec)*(NSECS_PER_SEC/TIMER_RES_DIVIDER)+(fin.tv_nsec-ini.tv_nsec)/TIMER_RES_DIVIDER) /* setting to 1/1000 of a second resolution by default with linux */ #ifndef TIMER_RES_DIVIDER #define TIMER_RES_DIVIDER 1000000 #endif #define SAMPLE_TIME_IMPLEMENTATION 1 #else #define NSECS_PER_SEC 1000000000 #define EE_TIMER_TICKER_RATE 1 #define CORETIMETYPE time_t #define GETMYTIME(_t) (*_t = time(NULL)) #define MYTIMEDIFF(fin,ini) ((fin - ini)*(NSECS_PER_SEC/TIMER_RES_DIVIDER)) #ifndef TIMER_RES_DIVIDER #define TIMER_RES_DIVIDER 1000000000 #endif #define SAMPLE_TIME_IMPLEMENTATION 1 /* #define NSECS_PER_SEC 1000000000 #define EE_TIMER_TICKER_RATE 1000 #define CORETIMETYPE ee_u32 #define GETMYTIME(_t) (*_t = SDL_GetTicks()) #define MYTIMEDIFF(fin,ini) ((fin - ini)*(NSECS_PER_SEC/TIMER_RES_DIVIDER)) #ifndef TIMER_RES_DIVIDER #define TIMER_RES_DIVIDER 1000000 #endif #define SAMPLE_TIME_IMPLEMENTATION 1*/ #endif #define EE_TICKS_PER_SEC (NSECS_PER_SEC / TIMER_RES_DIVIDER) #if SAMPLE_TIME_IMPLEMENTATION /** Define Host specific (POSIX), or target specific global time variables. */ static CORETIMETYPE start_time_val, stop_time_val; /* Function: start_time This function will be called right before starting the timed portion of the benchmark. Implementation may be capturing a system timer (as implemented in the example code) or zeroing some system parameters - e.g. setting the cpu clocks cycles to 0. */ void start_time(void) { GETMYTIME(&start_time_val ); #if CALLGRIND_RUN CALLGRIND_START_INSTRUMENTATION #endif #if MICA asm volatile("int3");/*1 */ #endif } /* Function: stop_time This function will be called right after ending the timed portion of the benchmark. Implementation may be capturing a system timer (as implemented in the example code) or other system parameters - e.g. reading the current value of cpu cycles counter. */ void stop_time(void) { #if CALLGRIND_RUN CALLGRIND_STOP_INSTRUMENTATION #endif #if MICA asm volatile("int3");/*1 */ #endif GETMYTIME(&stop_time_val ); } /* Function: get_time Return an abstract "ticks" number that signifies time on the system. Actual value returned may be cpu cycles, milliseconds or any other value, as long as it can be converted to seconds by . This methodology is taken to accomodate any hardware or simulated platform. The sample implementation returns millisecs by default, and the resolution is controlled by */ CORE_TICKS get_time(void) { CORE_TICKS elapsed=(CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val)); return elapsed; } /* Function: time_in_secs Convert the value returned by get_time to seconds. The type is used to accomodate systems with no support for floating point. Default implementation implemented by the EE_TICKS_PER_SEC macro above. */ secs_ret time_in_secs(CORE_TICKS ticks) { secs_ret retval=((secs_ret)ticks) / (secs_ret)EE_TICKS_PER_SEC; return retval; } #else #error "Please implement timing functionality in core_portme.c" #endif /* SAMPLE_TIME_IMPLEMENTATION */ PSP_MODULE_INFO("CoreMark", PSP_MODULE_USER, 1, 0); PSP_MAIN_THREAD_ATTR(PSP_THREAD_ATTR_USER); PSP_HEAP_SIZE_MAX(); int PSP_exit_callback(int arg1, int arg2, void* common) { exit(0); return 0; } int PSP_exit_callback_thread(SceSize args, void* argp) { int cbid; cbid = sceKernelCreateCallback("Exit Callback", PSP_exit_callback, NULL); sceKernelRegisterExitCallback(cbid); sceKernelSleepThreadCB(); return 0; } int PSP_exit_setup_callbacks(void) { int thid = 0; thid = sceKernelCreateThread("update_thread", PSP_exit_callback_thread, 0x11, 0xFA0, 0, 0); if (thid >= 0) sceKernelStartThread(thid, 0, 0); return thid; } ee_u32 default_num_contexts=MULTITHREAD; /* Function: portable_init Target specific initialization code Test for some common mistakes. */ void portable_init(core_portable *p, int *argc, char *argv[]) { pspDebugScreenInit(); PSP_exit_setup_callbacks(); // // Register sceKernelExitGame() to be called when we exit // atexit(sceKernelExitGame); //SDL_Init(SDL_INIT_TIMER); scePowerSetClockFrequency(333, 333, 166); ee_printf("CoreMark PSP\n"); #if PRINT_ARGS int i; for (i=0; i<*argc; i++) { ee_printf("Arg[%d]=%s\n",i,argv[i]); } #endif if (sizeof(ee_ptr_int) != sizeof(ee_u8 *)) { ee_printf("ERROR! Please define ee_ptr_int to a type that holds a pointer!\n"); } if (sizeof(ee_u32) != 4) { ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n"); } #if (MAIN_HAS_NOARGC && (SEED_METHOD==SEED_ARG)) ee_printf("ERROR! Main has no argc, but SEED_METHOD defined to SEED_ARG!\n"); #endif #if (MULTITHREAD>1) && (SEED_METHOD==SEED_ARG) { int nargs=*argc,i; if ((nargs>1) && (*argv[1]=='M')) { default_num_contexts=parseval(argv[1]+1); if (default_num_contexts>MULTITHREAD) default_num_contexts=MULTITHREAD; /* Shift args since first arg is directed to the portable part and not to coremark main */ --nargs; for (i=1; i*/ p->portable_id=1; } /* Function: portable_fini Target specific final code */ void portable_fini(core_portable *p) { p->portable_id=0; //SDL_Quit(); while(1); } #if (MULTITHREAD>1) /* Function: core_start_parallel Start benchmarking in a parallel context. Three implementations are provided, one using pthreads, one using fork and shared mem, and one using fork and sockets. Other implementations using MCAPI or other standards can easily be devised. */ /* Function: core_stop_parallel Stop a parallel context execution of coremark, and gather the results. Three implementations are provided, one using pthreads, one using fork and shared mem, and one using fork and sockets. Other implementations using MCAPI or other standards can easily be devised. */ #if USE_PTHREAD ee_u8 core_start_parallel(core_results *res) { return (ee_u8)pthread_create(&(res->port.thread),NULL,iterate,(void *)res); } ee_u8 core_stop_parallel(core_results *res) { void *retval; return (ee_u8)pthread_join(res->port.thread,&retval); } #elif USE_FORK static int key_id=0; ee_u8 core_start_parallel(core_results *res) { key_t key=4321+key_id; key_id++; res->port.pid=fork(); res->port.shmid=shmget(key, 8, IPC_CREAT | 0666); if (res->port.shmid<0) { ee_printf("ERROR in shmget!\n"); } if (res->port.pid==0) { iterate(res); res->port.shm=shmat(res->port.shmid, NULL, 0); /* copy the validation values to the shared memory area and quit*/ if (res->port.shm == (char *) -1) { ee_printf("ERROR in child shmat!\n"); } else { memcpy(res->port.shm,&(res->crc),8); shmdt(res->port.shm); } exit(0); } return 1; } ee_u8 core_stop_parallel(core_results *res) { int status; pid_t wpid = waitpid(res->port.pid,&status,WUNTRACED); if (wpid != res->port.pid) { ee_printf("ERROR waiting for child.\n"); if (errno == ECHILD) ee_printf("errno=No such child %d\n",res->port.pid); if (errno == EINTR) ee_printf("errno=Interrupted\n"); return 0; } /* after process is done, get the values from the shared memory area */ res->port.shm=shmat(res->port.shmid, NULL, 0); if (res->port.shm == (char *) -1) { ee_printf("ERROR in parent shmat!\n"); return 0; } memcpy(&(res->crc),res->port.shm,8); shmdt(res->port.shm); return 1; } #elif USE_SOCKET static int key_id=0; ee_u8 core_start_parallel(core_results *res) { int bound, buffer_length=8; res->port.sa.sin_family = AF_INET; res->port.sa.sin_addr.s_addr = htonl(0x7F000001); res->port.sa.sin_port = htons(7654+key_id); key_id++; res->port.pid=fork(); if (res->port.pid==0) { /* benchmark child */ iterate(res); res->port.sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP); if (-1 == res->port.sock) /* if socket failed to initialize, exit */ { ee_printf("Error Creating Socket"); } else { int bytes_sent = sendto(res->port.sock, &(res->crc), buffer_length, 0,(struct sockaddr*)&(res->port.sa), sizeof (struct sockaddr_in)); if (bytes_sent < 0) ee_printf("Error sending packet: %s\n", strerror(errno)); close(res->port.sock); /* close the socket */ } exit(0); } /* parent process, open the socket */ res->port.sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP); bound = bind(res->port.sock,(struct sockaddr*)&(res->port.sa), sizeof(struct sockaddr)); if (bound < 0) ee_printf("bind(): %s\n",strerror(errno)); return 1; } ee_u8 core_stop_parallel(core_results *res) { int status; int fromlen=sizeof(struct sockaddr); int recsize = recvfrom(res->port.sock, &(res->crc), 8, 0, (struct sockaddr*)&(res->port.sa), &fromlen); if (recsize < 0) { ee_printf("Error in receive: %s\n", strerror(errno)); return 0; } pid_t wpid = waitpid(res->port.pid,&status,WUNTRACED); if (wpid != res->port.pid) { ee_printf("ERROR waiting for child.\n"); if (errno == ECHILD) ee_printf("errno=No such child %d\n",res->port.pid); if (errno == EINTR) ee_printf("errno=Interrupted\n"); return 0; } return 1; } #else /* no standard multicore implementation */ #error "Please implement multicore functionality in core_portme.c to use multiple contexts." #endif /* multithread implementations */ #endif