/* Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Original Author: Shay Gal-on */ #include "coremark.h" /* Topic: Description Matrix manipulation benchmark This very simple algorithm forms the basis of many more complex algorithms. The tight inner loop is the focus of many optimizations (compiler as well as hardware based) and is thus relevant for embedded processing. The total available data space will be divided to 3 parts: NxN Matrix A - initialized with small values (upper 3/4 of the bits all zero). NxN Matrix B - initialized with medium values (upper half of the bits all zero). NxN Matrix C - used for the result. The actual values for A and B must be derived based on input that is not available at compile time. */ ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val); ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval); void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val); void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B); void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B); void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B); void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val); #define matrix_test_next(x) (x+1) #define matrix_clip(x,y) ((y) ? (x) & 0x0ff : (x) & 0x0ffff) #define matrix_big(x) (0xf000 | (x)) #define bit_extract(x,from,to) (((x)>>(from)) & (~(0xffffffff << (to)))) #if CORE_DEBUG void printmat(MATDAT *A, ee_u32 N, char *name) { ee_u32 i,j; ee_printf("Matrix %s [%dx%d]:\n",name,N,N); for (i=0; i N times, changing the matrix values slightly by a constant amount each time. */ ee_u16 core_bench_matrix(mat_params *p, ee_s16 seed, ee_u16 crc) { ee_u32 N=p->N; MATRES *C=p->C; MATDAT *A=p->A; MATDAT *B=p->B; MATDAT val=(MATDAT)seed; crc=crc16(matrix_test(N,C,A,B,val),crc); return crc; } /* Function: matrix_test Perform matrix manipulation. Parameters: N - Dimensions of the matrix. C - memory for result matrix. A - input matrix B - operator matrix (not changed during operations) Returns: A CRC value that captures all results calculated in the function. In particular, crc of the value calculated on the result matrix after each step by . Operation: 1 - Add a constant value to all elements of a matrix. 2 - Multiply a matrix by a constant. 3 - Multiply a matrix by a vector. 4 - Multiply a matrix by a matrix. 5 - Add a constant value to all elements of a matrix. After the last step, matrix A is back to original contents. */ ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val) { ee_u16 crc=0; MATDAT clipval=matrix_big(val); matrix_add_const(N,A,val); /* make sure data changes */ #if CORE_DEBUG printmat(A,N,"matrix_add_const"); #endif matrix_mul_const(N,C,A,val); crc=crc16(matrix_sum(N,C,clipval),crc); #if CORE_DEBUG printmatC(C,N,"matrix_mul_const"); #endif matrix_mul_vect(N,C,A,B); crc=crc16(matrix_sum(N,C,clipval),crc); #if CORE_DEBUG printmatC(C,N,"matrix_mul_vect"); #endif matrix_mul_matrix(N,C,A,B); crc=crc16(matrix_sum(N,C,clipval),crc); #if CORE_DEBUG printmatC(C,N,"matrix_mul_matrix"); #endif matrix_mul_matrix_bitextract(N,C,A,B); crc=crc16(matrix_sum(N,C,clipval),crc); #if CORE_DEBUG printmatC(C,N,"matrix_mul_matrix_bitextract"); #endif matrix_add_const(N,A,-val); /* return matrix to initial value */ return crc; } /* Function : matrix_init Initialize the memory block for matrix benchmarking. Parameters: blksize - Size of memory to be initialized. memblk - Pointer to memory block. seed - Actual values chosen depend on the seed parameter. p - pointers to containing initialized matrixes. Returns: Matrix dimensions. Note: The seed parameter MUST be supplied from a source that cannot be determined at compile time */ ee_u32 core_init_matrix(ee_u32 blksize, void *memblk, ee_s32 seed, mat_params *p) { ee_u32 N=0; MATDAT *A; MATDAT *B; ee_s32 order=1; MATDAT val; ee_u32 i=0,j=0; if (seed==0) seed=1; while (jA=A; p->B=B; p->C=(MATRES *)align_mem(B+N*N); p->N=N; #if CORE_DEBUG printmat(A,N,"A"); printmat(B,N,"B"); #endif return N; } /* Function: matrix_sum Calculate a function that depends on the values of elements in the matrix. For each element, accumulate into a temporary variable. As long as this value is under the parameter clipval, add 1 to the result if the element is bigger then the previous. Otherwise, reset the accumulator and add 10 to the result. */ ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval) { MATRES tmp=0,prev=0,cur=0; ee_s16 ret=0; ee_u32 i,j; for (i=0; iclipval) { ret+=10; tmp=0; } else { ret += (cur>prev) ? 1 : 0; } prev=cur; } } return ret; } /* Function: matrix_mul_const Multiply a matrix by a constant. This could be used as a scaler for instance. */ void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val) { ee_u32 i,j; for (i=0; i