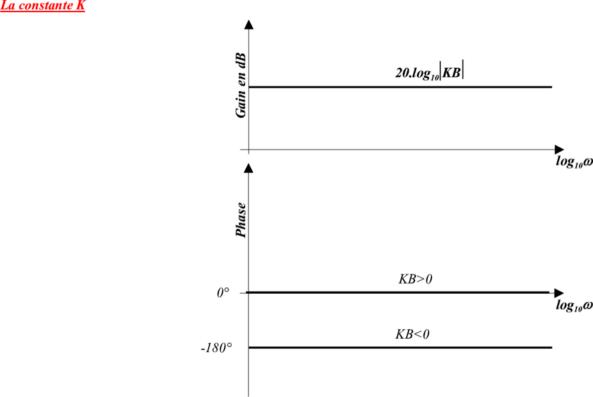
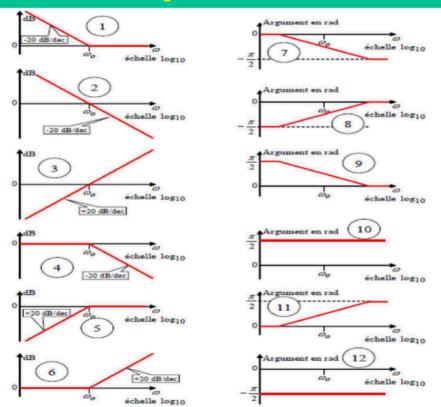
D) Rappel sur le diagramme asymptotique de BODE

On appel forme de Bode, toute fonction de transfert qui peut se mettre sous la forme

$$\omega_{1}$$
 ω_{1} ω_{2} ω_{3} ω_{4}


$$(1+j\frac{\omega}{-})(1+j\frac{\omega}{-})....(1+j\frac{\omega}{-})$$

$$\underline{T} = K. \frac{(1+j\frac{\omega}{\omega_1})(1+j\frac{\omega}{\omega_2})....(1+j\frac{\omega}{\omega_n})}{(j.\omega)^L.(1+\frac{\omega}{\omega'_1})(1+j\frac{\omega}{\omega'_2})...(1+j\frac{\omega}{\omega'_n})}$$


$$T = K \frac{(1+j\frac{\omega}{\omega_1})(1+j\frac{\omega}{\omega_2})....(1+j\frac{\omega}{\omega_n})}{(1+j\frac{\omega}{\omega_1})(1+j\frac{\omega}{\omega_2})....(1+j\frac{\omega}{\omega_n})}$$

D.1) Courbe de Bode de fonctions de réponses fréquentielles simples

 $K; \frac{1}{(j.\omega)^L}; \frac{1}{1+j.\frac{\omega}{\omega 0}}; 1+j.\frac{\omega}{\omega 0}$

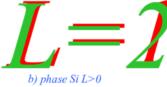
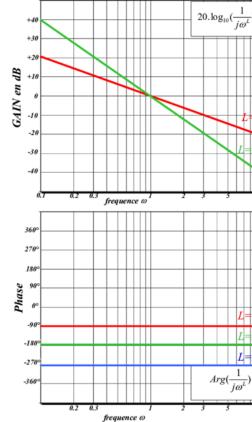
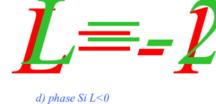


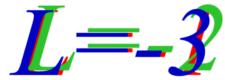
Diagramme de Bode

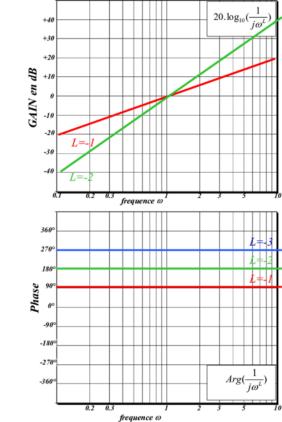


Le terme $\frac{1}{j\omega^l}$

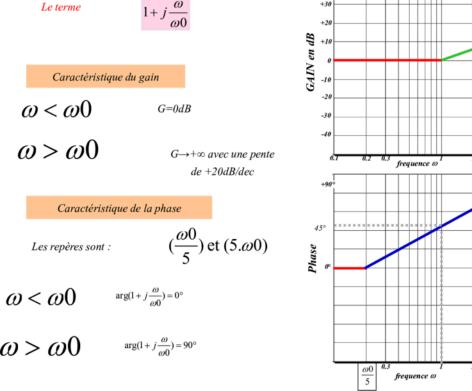
a) Gain Si L>0

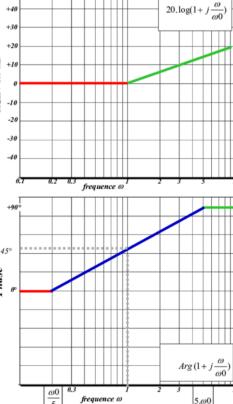



L=3



Le terme $\frac{1}{j\omega^L}$





20.log(-+40 $1+j.\frac{\omega}{\omega 0}$ Le terme +20 GAIN en dB Caractéristique du gain $\omega < \omega 0$ G=0dB-30 -40 $\omega > \omega 0$ $G \rightarrow -\infty$ avec une pente frequence ω¹ de -20dB/dec Caractéristique de la phase $(\frac{\omega 0}{5})$ et $(5.\omega 0)$ Les repères sont : Phase $\arg(\frac{1}{1+j\frac{\omega}{\cos \theta}}) = 0^{\circ} - 0^{\circ} = 0^{\circ}$ $\omega < \omega 0$ $arg(\frac{1}{1+j\frac{\omega}{c^{2}}}) = 0^{\circ} - 90^{\circ} = -90^{\circ}$ $\omega > \omega 0$ -90° $\frac{\omega 0}{5}$ frequence ω 5.00

 $1+j\frac{\omega}{\omega 0}$ Le terme +20GAIN en dB Caractéristique du gain -20 $\omega < \omega 0$ G=0dB-30 -40 $\omega > \omega 0$ $G \rightarrow +\infty$ avec une pente de +20dB/dec +90 Caractéristique de la phase $(\frac{\omega 0}{5})$ et $(5.\omega 0)$ Les repères sont : Phase $\arg(1+j\frac{\omega}{\omega 0})=0^{\circ}$

<u>Remarque:</u>

L'utilisation des filtres passifs est limitée à 10hz du côté des basses fréquence alors qu'il deviennent plus performant lorsque la fréquence d'utilisation dépasse 1 Mhz.

```
Les filtres actifs peuvent être utilisés à moindre coût lorsque la fréquence d'utilisation est inférieur à 100kHz (l'utilisation d'amplificateur courant, 081, 741, limite cette fréquence à une dizaine de kilohertz.)
```

F) Exercice :

Soit la fonction de transfert suivante

 $F(j.\omega) =$

 $1+j\omega-(\frac{\omega}{2})^2$

 $j.\omega.(1+j\frac{\omega}{0.5})(1+j\frac{\omega}{4})$

 $1+j\omega-(\frac{\omega}{2})^2$

 $j.\omega.(1+j\frac{\omega}{0.5})(1+j\frac{\omega}{4})$ $j.\omega.(1+j\frac{\omega}{0.5})(1+j\frac{\omega}{4})$

>Il faut faire apparaître les fréquences $\omega = 1/\tau$ $\omega 1 = 2$; $\omega 2 = 0, 5$ et $\omega 3 = 4$

 $F(j.\omega) =$