ROC Curve

The ROC curve illustrates this trade-off between the TPR and FPR
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Given the confusion matrix below.

Evaluation Methods (Classification problem)

Predicted: | Predicted:
n=165 NO YES
Actual:
NO 50 10
Actual:
YES 5 100

a. Calculate the accuracy of a classification model
b. Calculate the Precision and Recall values
c. Calculate F1-score



Evaluation Methods (Classification problem)

If a confusion matrix shows that there are 50 true positives (TP), 20 false positives (FP), 120 true
negatives (TN), and 10 false negatives (FN), what is the accuracy of the model?



Machine Learning

Supervised learning Unsupervised learning

Input data is labeled Input data is unlabeled
Data is classified based on Assigns properties of given
the training dataset data to classify it
Used for prediction Used for analysis
A known number of classes An unknown number of classes
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Linear Regression vs. Logistic Regression

Linear Regression Logistic Regression

* The main goal of Linear Regression is to find * The primary purpose of Logistic Regression is
the relationship between a dependent variable to predict a binary outcome (0 or 1) based on
and independent variables. the input features, which is interpreted as a

+ Used to solve regression problem probability

» Continuous dependent/continuous or discrete * Used to solve classification problem
target variables « Discrete/categorical dependent/target variables

* Hypothesis is a linear straight line (might not * Hypothesis is a S-curve (Sigmoid)

capture the complexity of some datasets) * It does not work well when the data has high
dimensionality or many correlated features
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Linear Regression

» Hypothesis representation
ho(x) = 6y + 61x1 + Ox3 + -+ + O,x,,

* Cost function
m
1 . N 2
1) = 722 (ha(x?) =)
i=

» Gradient descent
Repeat until convergence
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* The main purpose of the Gradient Descent algorithm
is to minimize the loss function by adjusting the
model's parameters.

* Asmaller learning rate can result in slower
convergence but more precise updates.

* Avery large learning rate, the algorithm may
oscillate around the optimal solution or diverge

Logistic Regression

* Hypothesis representation:
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* Gradient descent

Repeat until convergence
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Under-Fitting vs. Over-Fitting
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Small variance
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Under-fitting is when the model's
error on both the training and test
sets is very high.
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| Polynomial degree = 2

Good-fitting model
Small variance
Small bias

"generalization" mean the
ability of an Al system to be
trained on one dataset and
perform well on different,
unseen datasets

Polynomial degree = 20
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Over-fitting model
Small bias
High variance
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Over-fitting is when the model's error on the
training set is very low but the model's error on
the test set (i.e., unseen samples) is large.



The Bias/Variance Trade-off

The bias-variance tradeoff is the tradeoff between underfitting (high bias) and overfitting (high variance)
when building a model.
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Increasing model complexity (adding more independent variables) will increase its variance and reduce its bias.



Regularization
To solve the overfitting problem, regularization technique can be used.

L L1 regularization on least squares:
— The minimization

m
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But the function may not be unique.

L2 regularization on least squares:
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* Regularl_zallon with smooll_'lness \. \/ = L2 regularization L1 regularization
penalty is preferred for uniqueness : . : . {
and smoothness. ® Computational efficientdueto, Computational inefficient
« Link with some RIKHS norm and . having analytical solutions | onnon-sparse cases
smoothness Non-sparse outputs Sparse outputs

No feature selection Built-in featureselection



Normalization The process of transforming the columns in a dataset to the same scale
to make the training model less sensitive to the scale of features.

Before normalization After normalization
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