sad
DownloadTélécharger
Actions
Vote :
ScreenshotAperçu
Informations
Catégorie :Category: nCreator TI-Nspire
Auteur Author: Sikiminbasi
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 8.74 Ko KB
Mis en ligne Uploaded: 15/12/2024 - 13:13:34
Uploadeur Uploader: Sikiminbasi (Profil)
Téléchargements Downloads: 4
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4406850
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 8.74 Ko KB
Mis en ligne Uploaded: 15/12/2024 - 13:13:34
Uploadeur Uploader: Sikiminbasi (Profil)
Téléchargements Downloads: 4
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4406850
Description
Fichier Nspire généré sur TI-Planet.org.
Compatible OS 3.0 et ultérieurs.
<<
Ex1: Q1 : SI unit of Surface tension b) N/m Q2 : SI unit of Electric Field b) Nm C{¹ Q3 : SI base unit of Impulse b) kg m/s Q4 : SI base unit of Force b) kg m/s² Q5 : SI unit of Pressure a) Pascal Q6 : SI unit of Heat b) Joule Q7 : SI unit of Specific Heat Capacity b) J kg{¹ K{¹ Q8 : SI unit of Coefficient of Viscosity b) N s m{² Q9 : SI unit of Electric Flux d) N m² C{¹ Q10 : SI unit of Inductance d) Henry Q11 : SI unit of Magnetic Flux b) Weber Q12 : Coulomb is the equivalent of which SI unit c) Ampere second Q13 : SI unit of Electric Resistance b) Volt Ampere Q14 : Watt is equivalent to c) Ampere Volt Q15 : SI unit of Solid angle a) Radian Q16 : SI base unit of Work a) m² kg s{² Q17 : SI unit of Luminous Flux b) Lumen Q18 : SI unit of Electric Potential Difference c) Volt Q19 : SI unit of Power a) Joule Q20 : SI unit of Electric Conductance a) Siemens Ex2: Fertilizer Plant Process a) Sensing element Flow sensor : Measures the actual fertilizer application amount. b) Signal conditioning element The PID controller (Kp, Ki, Kd terms): Processes the sensed signal and adjusts it for control. c) Signal processing element The Optimization algorithm and PID controller : Processes the error between target application amount r(t)r(t) r ( t ) and actual amount y(t)y(t) y ( t ) . d) Data presenting element The objective function : Shows the output after signal processing. 2. Automatic Plant Process a) Sensing element Pressure thermometer : Measures the feedback (achieved temperature). b) Signal conditioning element Controller : Processes the signal to control the valve. c) Signal processing element Valve and steam flow actuator : Actuates based on control signals. d) Data presenting element Tank (process output) : Shows the controlled temperature as output. Automatic Electric Iron a) Sensing element Sensor : Measures the actual dryness of the clothes. b) Signal conditioning element Controller : Processes the error signal. c) Signal processing element Heating elements : Actuate the heat to reach desired dryness. d) Data presenting element Clothes : The output shows the actual dryness achieved. ######################################################################## Write an equation for the output shown in figures (a), (b), and (c): Wheatstone Bridge for Strain Measurement V_out=delta_R/R)*V_in V out = k Å µ Å V in Thermocouple Output with Lag E ( T ) = a 1_* T + a_ 2 * T^ 2 + a_ 3* T^3 Output = E ( T ) 38.74/ 1 + 10 s Accelerometer Output V = K Å a V = 0.36 Å a Å 1 0^ 7/ 4.5 × 1 0^ 3 + 1 0^ 7 2. Thermocouple Calibration Equation: Got it! Here's the plain text version formatted to be clean and clear for copying without adding unnecessary symbols: 2. Thermocouple Calibration Equation The given data is: E = 645 ¼V at T = 100°C (steam point) E = 3375 ¼V at T = 419.527°C (zinc freezing point) E = 9149 ¼V at T = 916.78°C (silver point) The equation is: E(T) = aT + aT² + aT³ We solve for a, a, and a using the three points. Substituting into the equation: 645 = a(100) + a(100)² + a(100)³ 3375 = a(419.527) + a(419.527)² + a(419.527)³ 9149 = a(916.78) + a(916.78)² + a(916.78)³ Here are the final answers: The coefficients are: a1=5.8944 a2=5.6909×103 a3=1.3470×106 The final equation is: E(T)=5.8944T+5.6909×103T21.3470×106T3 3. Platinum Resistance Sensor RT = R [1 + ±T + ²T²] Where: R = 100.0 © (resistance at 0°C) RT = 138.5 © at 100°C RT = 253.7 © at 419.6°C We substitute the given values into the equation: At T = 0°C: RT = R = 100.0 © At T = 100°C: 138.5 = 100 [1 + ±(100) + ²(100)²] At T = 419.6°C: 253.7 = 100 [1 + ±(419.6) + ²(419.6)²] The coefficients are: ±=3.9085×103alpha = 3.9085 times 10^{-3} ²=5.8507×107beta = -5.8507 times 10^{-7} The final equation is: RT=R0[1+(3.9085×103)T+(5.8507×107)T2]R_T = R_0 left[ 1 + (3.9085 times 10^{-3}) T + (-5.8507 times 10^{-7}) T^2 right] Where R0=100.0 ©R_0 = 100.0 , Omega . Got it! Here's the clean, copy-ready text along with answers for all the calculations. Lets proceed step by step: Exercise 2 A force sensor has an output range of 1 to 5 V corresponding to an input range of 0 to 2 × 10u N. Find the equation of the ideal straight line. The general equation of a straight line is: V=mF+cV = mF + c mm is the slope: m=VFm = frac{Delta V}{Delta F} m=512×1050=42×105=2×105m = frac{5 - 1}{2 times 10^5 - 0} = frac{4}{2 times 10^5} = 2 times 10^{-5} cc is the intercept: c=1c = 1 (when F=0F = 0 ) Final equation: V=2×105F+1V = 2 times 10^{-5} F + 1 A differential pressure transmitter has an input range of 0 to 2 × 10t Pa and an output range of 4 to 20 mA. Find the equation of the ideal straight line. The equation is: I=mP+cI = mP + c mm is the slope: m=IPm = frac{Delta I}{Delta P} m=2042×1040=162×104=8×104m = frac{20 - 4}{2 times 10^4 - 0} = frac{16}{2 times 10^4} = 8 times 10^{-4} cc is the intercept: c=4c = 4 (whe
[...]
>>
Compatible OS 3.0 et ultérieurs.
<<
Ex1: Q1 : SI unit of Surface tension b) N/m Q2 : SI unit of Electric Field b) Nm C{¹ Q3 : SI base unit of Impulse b) kg m/s Q4 : SI base unit of Force b) kg m/s² Q5 : SI unit of Pressure a) Pascal Q6 : SI unit of Heat b) Joule Q7 : SI unit of Specific Heat Capacity b) J kg{¹ K{¹ Q8 : SI unit of Coefficient of Viscosity b) N s m{² Q9 : SI unit of Electric Flux d) N m² C{¹ Q10 : SI unit of Inductance d) Henry Q11 : SI unit of Magnetic Flux b) Weber Q12 : Coulomb is the equivalent of which SI unit c) Ampere second Q13 : SI unit of Electric Resistance b) Volt Ampere Q14 : Watt is equivalent to c) Ampere Volt Q15 : SI unit of Solid angle a) Radian Q16 : SI base unit of Work a) m² kg s{² Q17 : SI unit of Luminous Flux b) Lumen Q18 : SI unit of Electric Potential Difference c) Volt Q19 : SI unit of Power a) Joule Q20 : SI unit of Electric Conductance a) Siemens Ex2: Fertilizer Plant Process a) Sensing element Flow sensor : Measures the actual fertilizer application amount. b) Signal conditioning element The PID controller (Kp, Ki, Kd terms): Processes the sensed signal and adjusts it for control. c) Signal processing element The Optimization algorithm and PID controller : Processes the error between target application amount r(t)r(t) r ( t ) and actual amount y(t)y(t) y ( t ) . d) Data presenting element The objective function : Shows the output after signal processing. 2. Automatic Plant Process a) Sensing element Pressure thermometer : Measures the feedback (achieved temperature). b) Signal conditioning element Controller : Processes the signal to control the valve. c) Signal processing element Valve and steam flow actuator : Actuates based on control signals. d) Data presenting element Tank (process output) : Shows the controlled temperature as output. Automatic Electric Iron a) Sensing element Sensor : Measures the actual dryness of the clothes. b) Signal conditioning element Controller : Processes the error signal. c) Signal processing element Heating elements : Actuate the heat to reach desired dryness. d) Data presenting element Clothes : The output shows the actual dryness achieved. ######################################################################## Write an equation for the output shown in figures (a), (b), and (c): Wheatstone Bridge for Strain Measurement V_out=delta_R/R)*V_in V out = k Å µ Å V in Thermocouple Output with Lag E ( T ) = a 1_* T + a_ 2 * T^ 2 + a_ 3* T^3 Output = E ( T ) 38.74/ 1 + 10 s Accelerometer Output V = K Å a V = 0.36 Å a Å 1 0^ 7/ 4.5 × 1 0^ 3 + 1 0^ 7 2. Thermocouple Calibration Equation: Got it! Here's the plain text version formatted to be clean and clear for copying without adding unnecessary symbols: 2. Thermocouple Calibration Equation The given data is: E = 645 ¼V at T = 100°C (steam point) E = 3375 ¼V at T = 419.527°C (zinc freezing point) E = 9149 ¼V at T = 916.78°C (silver point) The equation is: E(T) = aT + aT² + aT³ We solve for a, a, and a using the three points. Substituting into the equation: 645 = a(100) + a(100)² + a(100)³ 3375 = a(419.527) + a(419.527)² + a(419.527)³ 9149 = a(916.78) + a(916.78)² + a(916.78)³ Here are the final answers: The coefficients are: a1=5.8944 a2=5.6909×103 a3=1.3470×106 The final equation is: E(T)=5.8944T+5.6909×103T21.3470×106T3 3. Platinum Resistance Sensor RT = R [1 + ±T + ²T²] Where: R = 100.0 © (resistance at 0°C) RT = 138.5 © at 100°C RT = 253.7 © at 419.6°C We substitute the given values into the equation: At T = 0°C: RT = R = 100.0 © At T = 100°C: 138.5 = 100 [1 + ±(100) + ²(100)²] At T = 419.6°C: 253.7 = 100 [1 + ±(419.6) + ²(419.6)²] The coefficients are: ±=3.9085×103alpha = 3.9085 times 10^{-3} ²=5.8507×107beta = -5.8507 times 10^{-7} The final equation is: RT=R0[1+(3.9085×103)T+(5.8507×107)T2]R_T = R_0 left[ 1 + (3.9085 times 10^{-3}) T + (-5.8507 times 10^{-7}) T^2 right] Where R0=100.0 ©R_0 = 100.0 , Omega . Got it! Here's the clean, copy-ready text along with answers for all the calculations. Lets proceed step by step: Exercise 2 A force sensor has an output range of 1 to 5 V corresponding to an input range of 0 to 2 × 10u N. Find the equation of the ideal straight line. The general equation of a straight line is: V=mF+cV = mF + c mm is the slope: m=VFm = frac{Delta V}{Delta F} m=512×1050=42×105=2×105m = frac{5 - 1}{2 times 10^5 - 0} = frac{4}{2 times 10^5} = 2 times 10^{-5} cc is the intercept: c=1c = 1 (when F=0F = 0 ) Final equation: V=2×105F+1V = 2 times 10^{-5} F + 1 A differential pressure transmitter has an input range of 0 to 2 × 10t Pa and an output range of 4 to 20 mA. Find the equation of the ideal straight line. The equation is: I=mP+cI = mP + c mm is the slope: m=IPm = frac{Delta I}{Delta P} m=2042×1040=162×104=8×104m = frac{20 - 4}{2 times 10^4 - 0} = frac{16}{2 times 10^4} = 8 times 10^{-4} cc is the intercept: c=4c = 4 (whe
[...]
>>