Stat 1
DownloadTélécharger
Actions
Vote :
ScreenshotAperçu
Informations
Catégorie :Category: nCreator TI-Nspire
Auteur Author: gadder
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 1.94 Ko KB
Mis en ligne Uploaded: 15/12/2024 - 14:44:06
Uploadeur Uploader: gadder (Profil)
Téléchargements Downloads: 2
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4406895
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 1.94 Ko KB
Mis en ligne Uploaded: 15/12/2024 - 14:44:06
Uploadeur Uploader: gadder (Profil)
Téléchargements Downloads: 2
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4406895
Description
Fichier Nspire généré sur TI-Planet.org.
Compatible OS 3.0 et ultérieurs.
<<
Arbre de décision pour calculer la variance : Point de départ : Demandez-vous : "Quelle situation ai-je ?" Est-ce que je travaille avec des données brutes ? Oui Passez à la section 1. Données brutes . Non Continuez. Est-ce que je travaille avec une proportion ( p^ ) ? Oui Passez à la section 2. Variance d'une proportion (Loi de Bernoulli) . Non Continuez. Est-ce que je travaille avec un estimateur ou une moyenne d'échantillon ( XÉ ) ? Oui Passez à la section 3. Variance d'une moyenne (Estimateur) . Non Vous êtes probablement dans un cas particulier. Posez la question ! 1. Données brutes : Variance classique Calculer la moyenne : X(barre) = (somme des Xi) / n Calculer les écarts à la moyenne pour chaque Xi : Ecart = Xi - X(barre) Élever chaque écart au carré : (Ecart)**2 Faire la somme des carrés des écarts : Somme = somme((Xi - X(barre))**2) Calculer la variance : Si population complète : Variance = Somme / n Si échantillon : Variance (notée S**2) = Somme / (n - 1) Standard error (facultatif) si demandé : SE = racine(Variance / n) 2. Variance d'une proportion (p) Vérifier les données disponibles : Taille de l'échantillon : n Calculer la variance d'une proportion : Variance = (p * (1 - p)) / n Standard error (facultatif) : SE = racine(Variance) 3. Variance d'une moyenne (X(barre)) Vérifier la variance de léchantillon (S 2)** : Si elle est donnée, utiliser directement. Sinon, la calculer avec la méthode des données brutes (section 1). Calculer la variance de la moyenne : Variance(moyenne) = S**2 / n Standard error (facultatif) : SE = racine(Variance(moyenne)) Made with nCreator - tiplanet.org
>>
Compatible OS 3.0 et ultérieurs.
<<
Arbre de décision pour calculer la variance : Point de départ : Demandez-vous : "Quelle situation ai-je ?" Est-ce que je travaille avec des données brutes ? Oui Passez à la section 1. Données brutes . Non Continuez. Est-ce que je travaille avec une proportion ( p^ ) ? Oui Passez à la section 2. Variance d'une proportion (Loi de Bernoulli) . Non Continuez. Est-ce que je travaille avec un estimateur ou une moyenne d'échantillon ( XÉ ) ? Oui Passez à la section 3. Variance d'une moyenne (Estimateur) . Non Vous êtes probablement dans un cas particulier. Posez la question ! 1. Données brutes : Variance classique Calculer la moyenne : X(barre) = (somme des Xi) / n Calculer les écarts à la moyenne pour chaque Xi : Ecart = Xi - X(barre) Élever chaque écart au carré : (Ecart)**2 Faire la somme des carrés des écarts : Somme = somme((Xi - X(barre))**2) Calculer la variance : Si population complète : Variance = Somme / n Si échantillon : Variance (notée S**2) = Somme / (n - 1) Standard error (facultatif) si demandé : SE = racine(Variance / n) 2. Variance d'une proportion (p) Vérifier les données disponibles : Taille de l'échantillon : n Calculer la variance d'une proportion : Variance = (p * (1 - p)) / n Standard error (facultatif) : SE = racine(Variance) 3. Variance d'une moyenne (X(barre)) Vérifier la variance de léchantillon (S 2)** : Si elle est donnée, utiliser directement. Sinon, la calculer avec la méthode des données brutes (section 1). Calculer la variance de la moyenne : Variance(moyenne) = S**2 / n Standard error (facultatif) : SE = racine(Variance(moyenne)) Made with nCreator - tiplanet.org
>>