FORMULESS
DownloadTélécharger
Actions
Vote :
ScreenshotAperçu
Informations
Catégorie :Category: nCreator TI-Nspire
Auteur Author: david94160
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 3.06 Ko KB
Mis en ligne Uploaded: 17/12/2024 - 12:53:22
Uploadeur Uploader: david94160 (Profil)
Téléchargements Downloads: 2
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4414346
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 3.06 Ko KB
Mis en ligne Uploaded: 17/12/2024 - 12:53:22
Uploadeur Uploader: david94160 (Profil)
Téléchargements Downloads: 2
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4414346
Description
Fichier Nspire généré sur TI-Planet.org.
Compatible OS 3.0 et ultérieurs.
<<
QCM= E(beta coeff) B C(irr increase) C (irr increase) FV: C x (1+r)^t PV= C/(1+r)^t Perpetuity: constant, same amount every yr PV= C/(1+r) + & + C/(1+r)^n= C/r Growing annuity: payment growing each yr (inflation for ex) PV= (C/r-g) x (1-(1+g)^t/(1+r)^t) Annuity: you reimburse 15,000 ¬ yearly, during the next 20 years PV= (C/r) x (1-1/(1+r)^t) si delay on aj x1/(1+r)^t C=PV/(1-(1+r)^-n)/r si delay on aj au denom x1/(1+r)^t t= delay years n=number of annual payments EAC=PV of total costs x r / 1-(1+r)^-n NPV= -C0 + C1/(1+r)^1+&+C3/(1+r)^3 IRR is the discount that makes NPV=0 Discounted payback period is when the cumulative discounted CF turns positive To find the exact period: fraction of the year= remaining amount to recover/DCF in the yr Gordon Growth Model (calculate share price) P0=D1/r-g P0= current price of the share D1= divident next yr r=recquired rate of return g=growth rate of dividends Standard derivation: If 1 inconnue: sigma=w x sigma actif1 If 2 inconnues: sp=racine(w1^2s1^2+w2^2s2^2+2w1w2Cov(actif1,actif2) w= weight s (sigma) = deviation CAPM= E(ri) - rf = beta x (E(rm)-rf) E(ri ): Expected return of the asset (stock). rf=risk free rate E(rm)=expected return on the market Bond pricing: P=Somme(C/(1+r)^t)+F/(1+r)^n F= face value (amount reimbursed on bond maturity) t=time to maturity r or YTM(return you earn if you keep bond until maturity) Variance/covariance ex partiel22 Alpha: 3/4 -2% 1/4 +10% Beta: 1/4 -4% 3/4 +6% Expected return: E(Alpha)=3/4 x 2% + 1/4 x 10% = 1% Variance: Var alpha= 3/4 x (-2% - 1%)^2 + 1/4(10%-1%)^2 = 0,0027 Standard derivation: Salpha=racine(variance) Correlation: P=cov(alpha,beta)/s alpha x s beta = -1 Var(P)= x^2salpha^2 + (1-x)^2 x sigma^2beta + 2x(1-x) x cov alpha beta We minimize variance dVar(P)/dx=0 x=0.5 X is the weight The lower the correlation assets move in opposite direction (-1) lower the risk WACC (%) cost of capital WACC= ( D/V x Kd x (1-t)) + E/V x Ke Ke = cost of equity Kd= cost of debt t= corporate tax rate Relation entre pre tax return et after tax return: rb(1-t)=r net rb: pre tax r T: tax rate rnet: after tax return Modigliani miller II: Proposition II states that as a company increases its leverage (debt), the cost of equity rises. re=rwacc+(rwacc - rd) x D/E Re: cost of equity Rd: cost of debt Made with nCreator - tiplanet.org
>>
Compatible OS 3.0 et ultérieurs.
<<
QCM= E(beta coeff) B C(irr increase) C (irr increase) FV: C x (1+r)^t PV= C/(1+r)^t Perpetuity: constant, same amount every yr PV= C/(1+r) + & + C/(1+r)^n= C/r Growing annuity: payment growing each yr (inflation for ex) PV= (C/r-g) x (1-(1+g)^t/(1+r)^t) Annuity: you reimburse 15,000 ¬ yearly, during the next 20 years PV= (C/r) x (1-1/(1+r)^t) si delay on aj x1/(1+r)^t C=PV/(1-(1+r)^-n)/r si delay on aj au denom x1/(1+r)^t t= delay years n=number of annual payments EAC=PV of total costs x r / 1-(1+r)^-n NPV= -C0 + C1/(1+r)^1+&+C3/(1+r)^3 IRR is the discount that makes NPV=0 Discounted payback period is when the cumulative discounted CF turns positive To find the exact period: fraction of the year= remaining amount to recover/DCF in the yr Gordon Growth Model (calculate share price) P0=D1/r-g P0= current price of the share D1= divident next yr r=recquired rate of return g=growth rate of dividends Standard derivation: If 1 inconnue: sigma=w x sigma actif1 If 2 inconnues: sp=racine(w1^2s1^2+w2^2s2^2+2w1w2Cov(actif1,actif2) w= weight s (sigma) = deviation CAPM= E(ri) - rf = beta x (E(rm)-rf) E(ri ): Expected return of the asset (stock). rf=risk free rate E(rm)=expected return on the market Bond pricing: P=Somme(C/(1+r)^t)+F/(1+r)^n F= face value (amount reimbursed on bond maturity) t=time to maturity r or YTM(return you earn if you keep bond until maturity) Variance/covariance ex partiel22 Alpha: 3/4 -2% 1/4 +10% Beta: 1/4 -4% 3/4 +6% Expected return: E(Alpha)=3/4 x 2% + 1/4 x 10% = 1% Variance: Var alpha= 3/4 x (-2% - 1%)^2 + 1/4(10%-1%)^2 = 0,0027 Standard derivation: Salpha=racine(variance) Correlation: P=cov(alpha,beta)/s alpha x s beta = -1 Var(P)= x^2salpha^2 + (1-x)^2 x sigma^2beta + 2x(1-x) x cov alpha beta We minimize variance dVar(P)/dx=0 x=0.5 X is the weight The lower the correlation assets move in opposite direction (-1) lower the risk WACC (%) cost of capital WACC= ( D/V x Kd x (1-t)) + E/V x Ke Ke = cost of equity Kd= cost of debt t= corporate tax rate Relation entre pre tax return et after tax return: rb(1-t)=r net rb: pre tax r T: tax rate rnet: after tax return Modigliani miller II: Proposition II states that as a company increases its leverage (debt), the cost of equity rises. re=rwacc+(rwacc - rd) x D/E Re: cost of equity Rd: cost of debt Made with nCreator - tiplanet.org
>>