testiversio_2
DownloadTélécharger
Actions
Vote :
ScreenshotAperçu
Informations
Catégorie :Category: nCreator TI-Nspire
Auteur Author: karkuri11
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 1.77 Ko KB
Mis en ligne Uploaded: 23/01/2025 - 18:52:22
Mis à jour Updated: 23/01/2025 - 18:53:52
Uploadeur Uploader: karkuri11 (Profil)
Téléchargements Downloads: 3
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4474987
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 1.77 Ko KB
Mis en ligne Uploaded: 23/01/2025 - 18:52:22
Mis à jour Updated: 23/01/2025 - 18:53:52
Uploadeur Uploader: karkuri11 (Profil)
Téléchargements Downloads: 3
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4474987
Description
Fichier Nspire généré sur TI-Planet.org.
Compatible OS 3.0 et ultérieurs.
<<
Laplace-muunnos: s 2 Y ( s ) s y ( 0 ) y 2 ( 0 ) + Y ( s ) = 3 s 2 s^2 Y(s) - sy(0) - y'(0) + Y(s) = frac{3}{s^2} s 2 Y ( s ) sy ( 0 ) y 2 ( 0 ) + Y ( s ) = s 2 3 Alkuarvojen sijoitus: ( s 2 + 1 ) Y ( s ) = 3 s 2 + 1 (s^2 + 1)Y(s) = frac{3}{s^2} + 1 ( s 2 + 1 ) Y ( s ) = s 2 3 + 1 Muoto: Y ( s ) = 3 s 2 ( s 2 + 1 ) + 1 s 2 + 1 Y(s) = frac{3}{s^2(s^2 + 1)} + frac{1}{s^2 + 1} Y ( s ) = s 2 ( s 2 + 1 ) 3 + s 2 + 1 1 Osamurtokehitelmä: 3 s 2 ( s 2 + 1 ) = A s 2 + B s + C s + D s 2 + 1 frac{3}{s^2(s^2 + 1)} = frac{A}{s^2} + frac{B}{s} + frac{Cs + D}{s^2 + 1} s 2 ( s 2 + 1 ) 3 = s 2 A + s B + s 2 + 1 C s + D Nimittäjien poistaminen: 3 = A ( s 2 + 1 ) + B s ( s 2 + 1 ) + ( C s + D ) s 2 3 = A(s^2 + 1) + Bs(s^2 + 1) + (Cs + D)s^2 3 = A ( s 2 + 1 ) + B s ( s 2 + 1 ) + ( C s + D ) s 2 Kertoimet ratkaistuna: A = 3 , B = 0 , C = 0 , D = 3 A = 3, , B = 0, , C = 0, , D = -3 A = 3 , B = 0 , C = 0 , D = 3 Y(s): Y ( s ) = 3 s 2 3 s 2 + 1 + 1 s 2 + 1 Y(s) = frac{3}{s^2} - frac{3}{s^2 + 1} + frac{1}{s^2 + 1} Y ( s ) = s 2 3 s 2 + 1 3 + s 2 + 1 1 Ratkaisu (Laplace-käänteismuunnos): y ( t ) = 3 t 2 sin a ( t ) y(t) = 3t - 2sin(t) y ( t ) = 3 t 2 sin ( t ) Made with nCreator - tiplanet.org
>>
Compatible OS 3.0 et ultérieurs.
<<
Laplace-muunnos: s 2 Y ( s ) s y ( 0 ) y 2 ( 0 ) + Y ( s ) = 3 s 2 s^2 Y(s) - sy(0) - y'(0) + Y(s) = frac{3}{s^2} s 2 Y ( s ) sy ( 0 ) y 2 ( 0 ) + Y ( s ) = s 2 3 Alkuarvojen sijoitus: ( s 2 + 1 ) Y ( s ) = 3 s 2 + 1 (s^2 + 1)Y(s) = frac{3}{s^2} + 1 ( s 2 + 1 ) Y ( s ) = s 2 3 + 1 Muoto: Y ( s ) = 3 s 2 ( s 2 + 1 ) + 1 s 2 + 1 Y(s) = frac{3}{s^2(s^2 + 1)} + frac{1}{s^2 + 1} Y ( s ) = s 2 ( s 2 + 1 ) 3 + s 2 + 1 1 Osamurtokehitelmä: 3 s 2 ( s 2 + 1 ) = A s 2 + B s + C s + D s 2 + 1 frac{3}{s^2(s^2 + 1)} = frac{A}{s^2} + frac{B}{s} + frac{Cs + D}{s^2 + 1} s 2 ( s 2 + 1 ) 3 = s 2 A + s B + s 2 + 1 C s + D Nimittäjien poistaminen: 3 = A ( s 2 + 1 ) + B s ( s 2 + 1 ) + ( C s + D ) s 2 3 = A(s^2 + 1) + Bs(s^2 + 1) + (Cs + D)s^2 3 = A ( s 2 + 1 ) + B s ( s 2 + 1 ) + ( C s + D ) s 2 Kertoimet ratkaistuna: A = 3 , B = 0 , C = 0 , D = 3 A = 3, , B = 0, , C = 0, , D = -3 A = 3 , B = 0 , C = 0 , D = 3 Y(s): Y ( s ) = 3 s 2 3 s 2 + 1 + 1 s 2 + 1 Y(s) = frac{3}{s^2} - frac{3}{s^2 + 1} + frac{1}{s^2 + 1} Y ( s ) = s 2 3 s 2 + 1 3 + s 2 + 1 1 Ratkaisu (Laplace-käänteismuunnos): y ( t ) = 3 t 2 sin a ( t ) y(t) = 3t - 2sin(t) y ( t ) = 3 t 2 sin ( t ) Made with nCreator - tiplanet.org
>>