Vector Formulas
DownloadTélécharger
Actions
Vote :
ScreenshotAperçu

Informations
Catégorie :Category: nCreator TI-Nspire
Auteur Author: efischbacher
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 1.71 Ko KB
Mis en ligne Uploaded: 26/02/2025 - 12:21:09
Uploadeur Uploader: efischbacher (Profil)
Téléchargements Downloads: 3
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4518941
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 1.71 Ko KB
Mis en ligne Uploaded: 26/02/2025 - 12:21:09
Uploadeur Uploader: efischbacher (Profil)
Téléchargements Downloads: 3
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4518941
Description
Fichier Nspire généré sur TI-Planet.org.
Compatible OS 3.0 et ultérieurs.
<<
(a) Scalar Product (Dot Product) The dot product of two vectors A mathbf{A} A and B mathbf{B} B is given by: A Å B = A x B x + A y B y mathbf{A} cdot mathbf{B} = A_x B_x + A_y B_y A Å B = A x B x + A y B y where: A x , A y A_x, A_y A x , A y are the components of vector A mathbf{A} A , B x , B y B_x, B_y B x , B y are the components of vector B mathbf{B} B . (b) Angle Between Two Vectors The angle ¸ theta ¸ between two vectors A mathbf{A} A and B mathbf{B} B is found using: cos a ¸ = A Å B # A # # B # cos theta = frac{mathbf{A} cdot mathbf{B}}{|mathbf{A}| |mathbf{B}|} cos ¸ = # A ## B # A Å B where: # A # |mathbf{A}| # A # is the magnitude of vector A mathbf{A} A , given by: # A # = A x 2 + A y 2 |mathbf{A}| = sqrt{A_x^2 + A_y^2} # B # |mathbf{B}| # B # is the magnitude of vector B mathbf{B} B , given by: # B # = B x 2 + B y 2 |mathbf{B}| = sqrt{B_x^2 + B_y^2} Finally, the angle ¸ theta ¸ is: ¸ = cos a 1 ( A Å B # A # # B # ) theta = cos^{-1} left( frac{mathbf{A} cdot mathbf{B}}{|mathbf{A}| |mathbf{B}|} right) ¸ = cos 1 ( # A ## B # A Å B ) Made with nCreator - tiplanet.org
>>
Compatible OS 3.0 et ultérieurs.
<<
(a) Scalar Product (Dot Product) The dot product of two vectors A mathbf{A} A and B mathbf{B} B is given by: A Å B = A x B x + A y B y mathbf{A} cdot mathbf{B} = A_x B_x + A_y B_y A Å B = A x B x + A y B y where: A x , A y A_x, A_y A x , A y are the components of vector A mathbf{A} A , B x , B y B_x, B_y B x , B y are the components of vector B mathbf{B} B . (b) Angle Between Two Vectors The angle ¸ theta ¸ between two vectors A mathbf{A} A and B mathbf{B} B is found using: cos a ¸ = A Å B # A # # B # cos theta = frac{mathbf{A} cdot mathbf{B}}{|mathbf{A}| |mathbf{B}|} cos ¸ = # A ## B # A Å B where: # A # |mathbf{A}| # A # is the magnitude of vector A mathbf{A} A , given by: # A # = A x 2 + A y 2 |mathbf{A}| = sqrt{A_x^2 + A_y^2} # B # |mathbf{B}| # B # is the magnitude of vector B mathbf{B} B , given by: # B # = B x 2 + B y 2 |mathbf{B}| = sqrt{B_x^2 + B_y^2} Finally, the angle ¸ theta ¸ is: ¸ = cos a 1 ( A Å B # A # # B # ) theta = cos^{-1} left( frac{mathbf{A} cdot mathbf{B}}{|mathbf{A}| |mathbf{B}|} right) ¸ = cos 1 ( # A ## B # A Å B ) Made with nCreator - tiplanet.org
>>