Exam3
DownloadTélécharger
Actions
Vote :
ScreenshotAperçu

Informations
Catégorie :Category: nCreator TI-Nspire
Auteur Author: arman_dev
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 1.88 Ko KB
Mis en ligne Uploaded: 27/02/2025 - 02:33:38
Uploadeur Uploader: arman_dev (Profil)
Téléchargements Downloads: 2
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4520076
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 1.88 Ko KB
Mis en ligne Uploaded: 27/02/2025 - 02:33:38
Uploadeur Uploader: arman_dev (Profil)
Téléchargements Downloads: 2
Visibilité Visibility: Archive publique
Shortlink : http://ti-pla.net/a4520076
Description
Fichier Nspire généré sur TI-Planet.org.
Compatible OS 3.0 et ultérieurs.
<<
Midterm 3 - Electromagnetics Equations **Maxwell's Equations (Magnetostatics)** 1. Gausss Law for Magnetism: Å B = 0 2. Ampères Law (Differential Form): × H = J (Integral Form): . H Å d = I **Magnetic Vector Potential & Curl of A** - Magnetic field B from the vector potential A: B = × A - Ampères Law using A: × ( × A) = ¼ J **Vector Poissons Equation** - The Poisson equation for the vector potential: ² A = -¼ J **Ampères Law Applications** 1. Long wire of radius a carrying **uniform** current density J: - Inside (r < a): B = (¼ J r) / 2 - Outside (r > a): B = (¼ I) / (2À r) 2. Long wire with **non-uniform** current density J(r) = J e^(-r/r): - Use Ampères Law: . H Å d = I_enclosed - Integrate over given J(r) distribution. **Force Per Unit Length Between Two Parallel Wires** - Wires carrying currents I and I, separated by distance d: F' = (¼ I I) / (2À d) - If currents are in **same** direction force is **attractive**. - If currents are in **opposite** directions force is **repulsive**. End of Notes. Made with nCreator - tiplanet.org
>>
Compatible OS 3.0 et ultérieurs.
<<
Midterm 3 - Electromagnetics Equations **Maxwell's Equations (Magnetostatics)** 1. Gausss Law for Magnetism: Å B = 0 2. Ampères Law (Differential Form): × H = J (Integral Form): . H Å d = I **Magnetic Vector Potential & Curl of A** - Magnetic field B from the vector potential A: B = × A - Ampères Law using A: × ( × A) = ¼ J **Vector Poissons Equation** - The Poisson equation for the vector potential: ² A = -¼ J **Ampères Law Applications** 1. Long wire of radius a carrying **uniform** current density J: - Inside (r < a): B = (¼ J r) / 2 - Outside (r > a): B = (¼ I) / (2À r) 2. Long wire with **non-uniform** current density J(r) = J e^(-r/r): - Use Ampères Law: . H Å d = I_enclosed - Integrate over given J(r) distribution. **Force Per Unit Length Between Two Parallel Wires** - Wires carrying currents I and I, separated by distance d: F' = (¼ I I) / (2À d) - If currents are in **same** direction force is **attractive**. - If currents are in **opposite** directions force is **repulsive**. End of Notes. Made with nCreator - tiplanet.org
>>