Question 1)
$mathjax$u_0=\int_0^1\frac{1}{1+x}\,\mathrm{d}x\\
\phantom{u_0}=\left[\ln(1+x)\right]_0^1\\
\phantom{u_0}=\ln(1+1)-\ln(1+0)\\
\phantom{u_0}=\ln(2)-\ln(1)\\
\phantom{u_0}=\ln(2)-0\\
\phantom{u_0}=\ln(2)$mathjax$
\phantom{u_0}=\left[\ln(1+x)\right]_0^1\\
\phantom{u_0}=\ln(1+1)-\ln(1+0)\\
\phantom{u_0}=\ln(2)-\ln(1)\\
\phantom{u_0}=\ln(2)-0\\
\phantom{u_0}=\ln(2)$mathjax$
Question 2)a)
Pour tout entier naturel n,
$mathjax$u_{n+1}+u_n=\int_0^1\frac{x^{n+1}}{1+x}\,\mathrm{d}x+\int_0^1\frac{x^n}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}+u_n}=\int_0^1\frac{x^{n+1}}{1+x}+\frac{x^{n}}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}+u_n}=\int_0^1\frac{x^{n+1}+x^n}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}+u_n}=\int_0^1\frac{x^n\left(x+1\right)}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}+u_n}=\int_0^1 x^n\,\mathrm{d}x\\
\phantom{u_{n+1}+u_n}=\left[\frac{x^{n+1}}{n+1}\right]_0^1\\
\phantom{u_{n+1}+u_n}=\frac{1^{n+1}}{n+1}-\frac{0^{n+1}}{n+1}\\
\phantom{u_{n+1}+u_n}=\frac{1}{n+1}-\frac{0}{n+1}\\
\phantom{u_{n+1}+u_n}=\frac{1}{n+1}-0\\
\phantom{u_{n+1}+u_n}=\frac{1}{n+1}$mathjax$
\phantom{u_{n+1}+u_n}=\int_0^1\frac{x^{n+1}}{1+x}+\frac{x^{n}}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}+u_n}=\int_0^1\frac{x^{n+1}+x^n}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}+u_n}=\int_0^1\frac{x^n\left(x+1\right)}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}+u_n}=\int_0^1 x^n\,\mathrm{d}x\\
\phantom{u_{n+1}+u_n}=\left[\frac{x^{n+1}}{n+1}\right]_0^1\\
\phantom{u_{n+1}+u_n}=\frac{1^{n+1}}{n+1}-\frac{0^{n+1}}{n+1}\\
\phantom{u_{n+1}+u_n}=\frac{1}{n+1}-\frac{0}{n+1}\\
\phantom{u_{n+1}+u_n}=\frac{1}{n+1}-0\\
\phantom{u_{n+1}+u_n}=\frac{1}{n+1}$mathjax$
Question 2)b)
Utilisons la relation de la question précédente pour n=0 :
$mathjax$u_{0+1}+u_0=\frac{1}{0+1}\Leftrightarrow u_1+u_0=\frac{1}{1}\\
\phantom{u_{0+1}+u_0=\frac{1}{0+1}}\Leftrightarrow u_1+u_0=1\\
\phantom{u_{0+1}+u_0=\frac{1}{0+1}}\Leftrightarrow u_1=1-u_0\\
\phantom{u_{0+1}+u_0=\frac{1}{0+1}}\Leftrightarrow u_1=1-\ln(2)$mathjax$
\phantom{u_{0+1}+u_0=\frac{1}{0+1}}\Leftrightarrow u_1+u_0=1\\
\phantom{u_{0+1}+u_0=\frac{1}{0+1}}\Leftrightarrow u_1=1-u_0\\
\phantom{u_{0+1}+u_0=\frac{1}{0+1}}\Leftrightarrow u_1=1-\ln(2)$mathjax$
Question 3)a)
Remarque : L'algorithme fourni est censé calculer les termes de la suite à l'aide d'une boucle. Cela implique de construire l'algorithme autour d'une relation de récurrence, donnée ici en question 2)a), selon le squelette suivant :
- initialisation : affectation de la variable terme à la valeur du terme initial
- boucle : modification de la variable terme à l'aide de la relation de récurrence
D'après le 2)a), pour tout entier naturel n on a
$mathjax$u_{n+1}+u_n=\frac{1}{n+1}\\
\Leftrightarrow u_{n+1}=\frac{1}{n+1}-u_n$mathjax$
\Leftrightarrow u_{n+1}=\frac{1}{n+1}-u_n$mathjax$
- Code: Select all
Variables :
i et n sont des entiers naturels
u est un réel
Entrée :
Saisir n
Initialisation :
Affecter à u la valeur ln(2)
Traitement :
Pour i variant de 1 à n
| Affecter à u la valeur 1/i-u
Fin de Pour
Sortie :
Afficher u
Question 3)b)
D'après le tableau de valeurs, la suite semble décroissante et convergente vers 0.
Question 4)a)
Etudions le signe de
$mathjax$u_{n+1}-u_n$mathjax$
.Pour tout entier naturel n,
$mathjax$u_{n+1}-u_n=\int_0^1\frac{x^{n+1}}{1+x}\,\mathrm{d}x-\int_0^1\frac{x^n}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}-u_n}=\int_0^1\frac{x^{n+1}}{1+x}-\frac{x^{n}}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}-u_n}=\int_0^1\frac{x^{n+1}-x^n}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}-u_n}=\int_0^1\frac{x^n\left(x-1\right)}{1+x}\,\mathrm{d}x$mathjax$
\phantom{u_{n+1}-u_n}=\int_0^1\frac{x^{n+1}}{1+x}-\frac{x^{n}}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}-u_n}=\int_0^1\frac{x^{n+1}-x^n}{1+x}\,\mathrm{d}x\\
\phantom{u_{n+1}-u_n}=\int_0^1\frac{x^n\left(x-1\right)}{1+x}\,\mathrm{d}x$mathjax$
Or, pour tout entier naturel n et pour tout
$mathjax$x\in[0;1]$mathjax$
:- $mathjax$x\geq 0\Rightarrow x^n\geq 0$mathjax$
- $mathjax$x\leq 1\Leftrightarrow x-1\leq 1-1\\
\phantom{x\leq 1}\Leftrightarrow x-1\leq 0$mathjax$ - $mathjax$x\geq 0\Leftrightarrow 1+x\geq 1\Rightarrow 1+x\geq 0$mathjax$
$mathjax$x\in[0;1]$mathjax$
, $mathjax$\frac{x^n\left(x-1\right)}{1+x}\leq 0$mathjax$
.Donc pour tout entier naturel n,
$mathjax$\int_0^1\frac{x^n\left(x-1\right)}{1+x}\,\mathrm{d}x\leq 0$mathjax$
.La suite
$mathjax$(u_n)$mathjax$
est donc décroissante.Question 4)b)
On sait que la suite
$mathjax$(u_n)$mathjax$
est décroissante.Montrons de plus qu'elle est minorée.
Pour tout entier naturel n,
$mathjax$u_n=\int_0^1\frac{x^n}{1+x}\,\mathrm{d}x$mathjax$
.Or, pour tout entier naturel n et pour tout
$mathjax$x\in[0;1]$mathjax$
:- $mathjax$x\geq 0\Rightarrow x^n\geq 0$mathjax$
- $mathjax$x\geq 0\Leftrightarrow 1+x \geq 1\Rightarrow 1+x\geq 0$mathjax$
$mathjax$x\in[0;1]$mathjax$
, $mathjax$\frac{x^n}{1+x}\geq 0$mathjax$
.Donc pour tout entier naturel n,
$mathjax$\int_0^1\frac{x^n}{1+x}\geq 0\,\mathrm{d}x\leq 0$mathjax$
.La suite
$mathjax$(u_n)$mathjax$
est ainsi décroissante et minorée par 0.Donc la suite
$mathjax$(u_n)$mathjax$
est convergente.Question 5)
On pose donc
$mathjax$\lim\limits_{n\rightarrow+\infty}u_n=l$mathjax$
Or pour tout entier naturel n,
$mathjax$u_{n+1}+u_n=\frac{1}{n+1}$mathjax$
.Passons à la limite :
- $mathjax$\lim\limits_{n\rightarrow+\infty}u_{n+1}=\lim\limits_{n\rightarrow+\infty}u_n\\
\phantom{\lim\limits_{n\rightarrow+\infty}u_{n+1}}=l$mathjax$ - $mathjax$\lim\limits_{n\rightarrow+\infty}n+1=+\infty\Rightarrow \lim\limits_{n\rightarrow+\infty}\frac{1}{n+1}=0$mathjax$
$mathjax$l+l=0\Leftrightarrow 2l=0\\
\phantom{l+l=0}\Leftrightarrow l=\frac{0}{2}
\phantom{l+l=0}\Leftrightarrow l=0$mathjax$
\phantom{l+l=0}\Leftrightarrow l=\frac{0}{2}
\phantom{l+l=0}\Leftrightarrow l=0$mathjax$