Finally, substituting (16.14) in (16.10), we obtain

Ualpa) = \Hw—ﬂ‘:ﬁ explikL + jO(L)] explik|d|*/2q( L)), (16.18)

explicitely showing that a Gaussian beam maintains its form as it propagates through free-

space. Atz = L, the field [/,{3:) is properly normalized. This is evidenced by the correct
intensity radius a(L) entering the normalization factor \/F,/xa?(L). From Eq. {16.5), it is
clear then that the total power crossing the = = L plane is still given by F,. This should be

expected because we are talking about Gaussian beams propagating in free space.
16.3 Paraxial Helmholtz Equation

We pointed out at the beginning of Sec. 16.2 that Gaussian beams satisfy the Fresnel diffrac-

tien formula (13.12) which applies under paraxial conditions. The latter can be thought of as

the integral form of the Helmholtz Eq. (13.3) after paraxial approximation has heen applied
to it. Here we derive this paraxial form of the Helmholtz equation. We will leave the proof
that a daussian beam described by Eq. (16.2) satisfies the paraxial Helmholtz equation as
a homework exercise.

Substituting (16.1) in the Helmhoitz Eq. {13.3), we obtain

(V4 2007 expliks) + K2 U (7) expizs) =0,

where V! = % + ('fy" and we have explicitely noted the implicit dependence of U{j) on z

[via a(z) and R(z)] by subscripting the former. The above equation is easily simplified to
2 0‘ Ul
Vitdp) + 5 Uapl + )JL— U.(p)=0. (16.17)

]
The paraxial approximation is now applied by neglecting 630;; as compared with k%{{i ~
18U,

I
i T Physically. it says that the change in a—(;-— along = is negligibly small over a wave-
length. Throwing away the middle ternyon the left side of Eq. (16.17), we obtain
Vi Gl D iis -
P UAp) + 29k Et-z{pl =0, (16.18)
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which is known as the pararial Helmholtz equation. It can be shown, with little effort, that
the Fresnel diffraction formula is an exact solution of the above equation for an arbitrary

input field U;(5).
16.4 Elliptic Gaussian Beams

The Gaussian beam defined by Eq. (16.2) is cylindrically symmetric. The intensity radius
a and the phase radius of curvature R are the same along hoth r and y directions. Many
optical systems, however, are not cylindrically symmetric. In such systems, more general
forms of Gaussian beams can exist. We first generalize o the case of an elliptic Gaussian

beam defined by the following transverse spatial dependence:

UGG = [P exp (ka?/20.) exp (k32 (16.19)

where

11 L1

==L ad -—=L 1 16.20

@ RO LR (16.20)
Taking the modulus square of Eq. (16.19). the intensity profile is given by

= 1p =12 Py 272 2f.2
1p) = [0 = = exp (=2*/aZ) exp (~y/al). (16.21)
Ta.a,

From the above equation, we identify a. to be the intensity radius along the x direction and
4y to be that along the y direction. Similarly, by looking at. the phase part of Eq. (16.19),
we identily R, to be the phase radius of curvature along the = direction and R, to be that
along the y direction. Integrating /(5) over the r-y plane, one can verify that the total power
carried by the beam is P,

Following steps similar to those in Eqgs. (16.6)-{16.11), we now show that an elliptic
Gaussian beam stays elliptic as it propagates through free space. In the input plane at

= =10, the Fourier transform of the elliptic Gaussian beam is

PR F . — . " .
i) = 1/;&“—”\/; Moo/ iMwesp (~jrhuof?) exp (=i Agof2) . (16.22)
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where the subscript 0 specifies the parameters a.q, ay0, gs0, and gy in the = = 0 plane. Using

Eqgs. {15.7) and {15.9), the Fourier transform of the output field at z = L is given by

P, " . .
\ r— Virgzoy/7Ag0 exp(jkL)

x exp [~jnMgeo + L) 2] exp [~imA(gy0 + L) f7]

(i e

x\/i0a(D/iAgy (L) exp [~ jxas( L) f2] exp [—imau(L)f2]  (16.23)

0ol F)

where
(L) =g+ L, and g(L)=gy+L (16.24)
Thus, as the elliptic Guassian beam propagates in free space, its parameters g, and g, inde-

pendently change in the same way as the parameter g for the circularly-symmetric Gaussian

beam. Inverse Fourier transforming Eq. (16.23). we obtain

Pl . . .
Ulpa) = M‘l'ﬂxoa,o qf[‘:],lqu{"z)exp(;kf.lexp[sz%,-"!q,(L]]exp [}kyZ{EQ,(L)]

P, I .
1,‘mewlj“’+{&rf“*‘&;(“”ﬂ

x exp [fkd/20.( L)) exp [hyd/20,(L)] (16.25)

with

P S 7 )

0; = —tan (1+UR&0 . (16.26)

0, = ‘Lj‘ (16.27)

for i = z,y. Separating Eq. (16.24) into real and imaginary parts, one can also show that

all) = ao[(l+L/Ro) +072]""" (16.28)

[+ L/Ror + 03]
{1+ L/ Rio)Lf Reo + 07

RiL) = (16.29)
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Figure 16.2: Iniensity profile of a TEM,y Gaussian beam.
16.5 Higher-Order Gaussian Beams

Many optical systems can support higher-order Gaussian beams having the following trans-
verse spatial dependence:

P

142
i (3] = | ———— = Iz avalsEla12 30)
T— ( mi_;nsmmm) ol /a0) ol o) exp(iklol/200),  (16.30)

where H,, is the nth order Hermite polynomial, and the rest of the quantities are as defined
before. Such a beam is referred to be in the TEM,.,. (transverse electromagnetic) mode. A

few of the lowest order Hermite polynomials are

Hylz) = 1, (16.31)
Hi(z) = 22, (16.32)
Haz) = 42* -2, {16.33)
Hy(z) = 82 —12z. (16.34)

The intensity profile associated with the TEM,o mode is

l

B2
§.| 5

; { . .
freM,(2) =1/ 7 zexp(— || fud). (16.33)
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Figure 16.3: Intensity profile of the donul-mode Gaussian beam.

The r and y intensity dependences of the TEM ginode are plotted in Fig. 16.2.

Under certain conditions, lasers can support what is known as the donut mode. It is
/50 superposition of the TEMg, and TEM ;g modes with a /2 phase shift. The transverse
field dependence of the donut mode can be written as

_ Ul(f) = jUai(5)
- et

Uonu(p) (16.36)

where either the + or the — sign can be chosen. Using transverse dependences of the TEM;,

and TEMp modes,
12
Userma(3) = ‘Jw:‘ 22 cxp (P 2a0) (16.37)

and the transverse intensity profile is given by

Lionua () = |Udonan(2)*

P, : :
= _‘;.( Tty exp (=15 fag) . (16.38)
"o

which is plotted in Fig. 16.3 as a function of both z and y.
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NORTHWESTERN UNIVERSITY
Department of Electrical Engineering and Computer Science

Lecture 17 - EECS 379
PROPAGATION OF GAUSSIAN BEAMS: A FEW EXAMPLES
Reading Assignment: YARIV - Secs. 2.4 and 2.5.

17.1 Introduction

We have shown in the previous lecture that Gaussian beams maintain their form as they
propagate through free space. Only the complex parameter g, describing their intensity

radius a and the phase radius of curvature f, changes according to

glz) = qo + =. (17.1)
where qq is the initial value at z = 0. Thus in Gaussian-beam propagaticn problems, it is
enough to track the behavior of ¢{z), or of the components R(z) and a(z), from place to

place. If needed, the spatial profile of the complex envelope U/.{5) describing the Gaussian

heam at any = can be obtained immediately from Eq. (16.2); it is given by

i) = %” expliks + 10(z)) explikIa/24(2), (17.2)
where
0z} = —tan'[07 /(1 + =/ Ro)], (17.3)
kal
n. = 2o (17.4)

Below we consider a few examples that commonly arise in various applications of Gaussian

beains.

17.2 Collimated Gaussian Beam

The first example we consider is that of a beam which is collimated at z = 0, i.e., its phase-

fronts are parallel and flat with an infinite radius of curvature. Substituting Ry = o in

17.1



aiiag
3 [}
Geometrical-Optic
or Near-Field
2
Physical-Optic
P Y or Far-Field

i - -: Region

JPPtay : 8= 1kag Q,<<1
0 k=== \ » z/ka}

0 05 1 15 2 25

Figure 17.1: [niensity radius of an initially collimated Gaussian beam.

Eqs. {16.13) and (16.12), the intensity radius and the phase radius of curvature are given
by

a(z) = a[l + Q7Y = agyf1 + (17.5)

ag
2.4
R = of1+08) =+ By (17.6)

Let us now examine the behavior of a(z) and R{z). the first of which is plotted in
Fig. 17.1. We have chosen to display the normalized intensity radius a{z)/ag versus the
normalized distance =/kaf = Q7. We first notice that in the region for which = < ka} or
Q% 1, alz) = ap and R(:) = kal/z = kag . > 1. We call this the geometrical optic
region because in this region a{=) and R{z) do not deviate much from their initial values
at = = 0. The Gaussian beam stays collimated and its phase-fronts stay flat. A collimated
pencil of rays belaves this way in the geometrical-optic description of light.

We next investigate the region for which = % kad or 0. < 1. In this region, a(z) =
a9/f): = z/kag, and R{z) ~ :. We call this the physical-optic region because in this region
the wave nature of the Gaussian beam really stands out. Both the intensity radius a(z)
and the phase radius of curvature (=) increase linearly with =, The behavior of the latter
is the same as that for spherical waves emitted by a point source located at = = 0. The

former implies that the paraxial intensity P/ra?(z) falls inversely as =* just as it would for

17.2
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Figure 17.2: Intensity radius of an initially focussed Gaussian beam.

spherical waves emitted by a point source at = = 0. The transverse intensity profile, however,
stays Gaussian at all z. In summary, in the region z 3% ka?, the spreading Gaussian beam
appears as if it was a right circular conical section out of spherical waves emitted by a point

source located at = = 0. The half-angle of divergence # is given by

=2 (177

el L L
kag ~ kap 2way

# =tan™' —— = tan”

As a numerical example, let us consider the Gaussian beam emitted by a He-Ne laser that
vou have seen in the laboratory. For such a beam \ = 632.8nm and aq is typically 0.5mm at
the output mirvor of the laser. The geometric region, also called the near-field region, for this
beam extends to kaf = 2mal/) =~ 2.5m from the output mirror. = » 2.5m constitutes the

physical-optic or the far-field region. The half-angle of divergenceis @ = A/2mag ~ 0.2mrad.
17.3 Focussed Gaussian Beam

The second example we consider is that of a beam which has a negative radius of curvature

fg = —|HRa|at = = 0. From Eq. (16.13), the intensity radius for such a beam is given by

a(z) = ag, (1 -IR;’oern_;?. (17.8)

which is plotted in Fig. 17.2 for = > 0. Because the radins of curvature at z = 0 is negative,

the Ganssian beam has converging wave [ronts which give rise to a decreasing intensity radius

17.3



for = > 0. The beam comes to a locus, that is, it achieves a minimum intensity radius at
some value of z, say 25, and then spreads out. zo can be obtained by equating the derivative
4a(z) or £4%(z) equal to zero. We get

d z -1 2_z
a [2(1 ‘m) (IETI) * (reaa)z]
0,

2
4@

which when solved gives

_ |Ro|03 5
= (17.9)

where .
o = kad/|Ro| (17.10)

is a dimensionless parameter. Substituting zo in Eq. (17.8), the minimum intensity radius

alzp) is found to be

] 4 | o[22
T+ 7 {1+ M)(kagy?
Ay

. ' (17.11)
;}1+ng

Let us now interpret these results. First of all, we see from Eq. (17.9) that zp < |Ryl

a(z) = ﬂoJll-

implying that the minimum intensity radius, i.e.. the beam waist, occurs before the value
predicted by the initial radius of curvature. See Fig. (17.2). When 2y » 1 or ka} 3 |Ro|, we
are in the so called geometrical-optic limit because then z ~ | Ral and a(zp) = ag/Q < ap.
These results are in agreement with the laws of geometrical optics according to which a
converging beam with an initial radius of curvature —|Ro| should come to a point focus at
o = |fp]. On the other hand, when g < 1, ie.. kad < |Rof, 20 = |Rp|02 and a{zg) = ag
resulting in a large deviation from the geometrical-optic result. A focussed beam with
o < 1 is dominated by the effects of diffraction. In this limit the initially negative radius
of curvature fails to significantly decrease the initial intensity radius.

At a very large = (: 3 zo). from Eq. (17.8). az) is approximately given by

2 .
ol=) = “\Jmnp*‘u-.a;}i
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= :_"% J1+03. (17.12)
{(}

If 5 > 1, a(2) = aoz/|Ro| and the half-angle of divergence # obeys the geometrical-optic re-
sult # = tan~"[a{z)/z] = tan~[ao/| Ro|]. On the other hand if (% < 1, the behavior of the ini-
tially focussed Gaussian beam is not much different from that of an initially collimated beam.
In this limit, the half-angle of divergence is given by # = tan='{a(z)/z] = tan—(1/kay), which
should be compared with Eq. (17.7).

The radius of curvature for an initially focussed Gaussian beam follows [cf. Eq. {16.12)]

(1 = z/|Rol)* + 07

R = = o iR el - 0

(17.13)

[t is easy to show that R{zg) = so. Moreover, for = < =g, B(z) < 0 and for = > zp, R(z) > 0.

[These resuits are readily obtained by noting the hehavior of the denominator

P R T

| Rol Iﬁl 1Ral |R11I3 TRo[*(kad)?
- T TR R
= m(l—:—ui

in Eq. (17.13), where Eqs. (17.10) and (17.9) have heen substituted.] Thus, the radius of
curvature of the initially focussed Gaussian beam stays negative until the waist (the point
of minimum intensity racius) at = = z; where it becomes infinite. The phase fronts at this
point are parallel and flat. Therealter, the radius of curvature becomes positive as it would

be for a diverging beam.

17.4 Spherical Mirror Resonators

The simplistic theory of a laser that we considered in Lecture § was constructed for a laser
resonator made of plane mirrors. In practice, however, most lasers use curved-mirror res-
onators which are easily analyzed using the Gaussian heam formalism. In fact, the lowest

order natural modes of curved-mirror resonators have Gaussian transverse profiles.
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Figure 17.3: Schematic of a curved-mirror resonator.

Let us consider a Gaussian beamn with a waist of radius ap at z = 0 as shown in Fig. 17.3.
As the beam propagates to the right, its intensity radius and the phase radius of curvature
change according to Eqs. (17.5) and {17.6). We let the beam propagate up to = = Ly where
we place a mirror of diameter d; and radius of curvature Ry. If we choose dy > 4a(La),
By = R{L,), and orient the mirror perpendicular to the optical axis {z axis), then the
Gaussian beam would be reflected upon itself and propagate along the —z direction retracing
its path through = = 0. Now we let the heam propagate to the left up to : = — £, and
place another mirror of diameter d, and radius of curvature &, perpendicular to the optical
axis. Since both Eqs. (17.5) and (17.6) are even functions of =, they apply as well to the left
propagating Gaussian beam as they do to the right propagating beam. Now if we choose
dy > da(—L;) and Ry = R(—L,). the Gaussian heam would be reflected upon itself once
again and start bouncing back and forth between the two mirrors.

The situation here is similar to the plane-mirror Fabry-Perot resonator considered in
Sec. 4.5. The resonance condition occurs when the phase shift due to one round-trip propa-

gation equals an integral multiple of 2r. From Eq. (17.2)
= 2k(Ly + La) + O(Ly + L)), (17.14)

where 8( 1, + L) is obtained from Eq. (17.3) to he

(Lo 4+ La)/ka?(=Ly)

L+ fa) = _Lan_l[I"-_(fq-l-L—a}fﬁ(—_L,-}

| (17.15)
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Setting § = 2mm, the mth resonance frequency is given by

me eB( Ly + Lq)

YT L+ L) 2l + L)
_me cB()
- -5 (17.16)

and the free-spectral range (FSR) is Av = ¢/2¢, where £ = L, + L,. Thus, we see that the
usage of curved mirrors leaves the FSR unchanged whereas the absolute resonance frequency
Y is modified [cf. Egs. (4.15) and (4.14) with 87 = 0 and n = 1|. Since the transverse
profile of a Gaussian beam extends to infinity, Lhere is some diffraction loss at each mirror.
By choosing the mirrors large encugh [dy > da{—L;) and dy > 4a(L,)}, this loss can be

minimized to any desired value. Such a choice is not available with plane mirror resonators.




