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NORTHWESTERN UNIVERSITY

Department of Electrical Engineering and Computer Science

Lecture 9 - EECS 379
PROPERTIES OF FABRY-PEROT LASERS

Reading Assignment: YARIV - Sec. 6.5.

9.1 OQutput Frequency Tuning

In arriving at the output power expression (3. 15). we assumerd that there was a Fabry-Perot
(FP) resonance al the peak of the gain curve. Because of this, the intensity within the
resonator grew up al » = vy, and hence. the output was of [requency vg. This assumption,
however. is nol necessary. For laser action Lo oceur. one only requires that the FP resonance
condition {%.8). i.e.. the positive leedhack condition. be satisfied at some [requency v within
the band of frequencies for which the ausaturated gain is larger than the threshold value.
The gain and loss spectea at and above threshold when w, # v are illustrated in Figs. 9.1
ane 1.2, respectively. In this case. the ontput power is of frequency w, [note the comment
before Fep. (8.10)] and can be written as

L) W,
ol ‘T ¥ - .
o™ = 2 ( Wil I) - @0

agv)

AnRM e ~===== |ossline

I
! Wp- Wi )
1
1
I
'. -
Vi v

Flgare 01z e aaned oss speedi i thiresholld whe n e, 3 .



B A ey o loss line

<Y

Figure 9.2: Gain and loss spectrn above threshold when v, # vy.

where from Eqs. (7.30) and (3.12)

Sx vy,

Ivm) = oo (9.2)
N . 37 ln 2
Wiiv,) = —ﬁ'{m‘ (9.3)

Since both (v ) and Wi, ) are proportional to 1/g(v,, ), the saturation intensity and the
threshold pumping rate are higher al v, # v than those at w, = ny.

From Eqs. (3.9) and (8 10). we see that the resonance v, can be varied hy changing Lhe
leagth € of the Fahry-Perol (FP) ravity. One way Lo accomplish this is to mount one of the
mirtors of the FP laser on a piezoelectric tansducer (PZT). The thickness of a PZT can be
coutrolled Lo within [ractions of a micron by applying a voltage across it. Thus, the length
ol the laser cavity, and hence the resonance frequency, becomes proportional to the applied
voltage. As v, varies. rom Eqs. (9.1)-19.3). the output power al , also varies. At a given

pumping rate, we ohiain
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Figure 9.3: Tuning range of an PP luser at W, = 2W,, 3W,. and 4W,.
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witere in the third equality, we have substituted g(w, ) from Eq. {5.23); in the [ourth, used

Egs. (9.1)-(9.3); in the ffth. used Eq. {8.15); and when the v dependence of W, is not
specified, it is assumed to be at ¢ = py. The behavior of F:.‘.Jt as a function of vy, is plotted
in Tig. 9.3, The tuning range Ar. ie.. the lrequencies over which the laser can operate, is
approximately given by
Av [TF, .
A E T W " @

Thus, the range is wider al higher pumping rates. At W, = 2H7, for example, the PP laser

is tunable over wp &£ Aw/2. a verv limited range ingleed for gases with Av ~ 107Hz. In
dve fasers deocan be larger than 187 1l giving o very large tmability range {wavelength

tanabilil v e in exeess of Dnme.



9.2 Internal Losses in an FP Laser

In derivation of Eq. (8.5), we assumed that the plane waves within the FP rescnator do not
experience any losses in propagation from one mitror to the other. In real lasers, however,
this assumption is not quite valid. As we will learn in the second half of this course, at least
there is loss due to diffraction. This results from the fact that the waves running back and

forth within the FP resonator are not quite plane waves. In propagation from one mirror to

the other. the tion of the elec gnetic wave increases due Lo diffraction, resulting
in a part of the wave leaking out of the resonator.

The effect of internal losses within the laser can be included by generalizing the relation
B+T =110 R+T4 L =1 where L s the [ractional energy loss as the plane wave is
reflected back and forth between the end mirrors of reflectivity B and transmitivity T. The

lasing condition (8.6) then generalizes to
(L= L = Thesp[atu)t +23(u}e] = 1. _(9.6)

Taking the real and imaginary parts. we see that the FP resonance condition (8.8) stays

intact whereas the euergy conservation condition (8.7) modiles Lo
. ! o
a[u]=—?ln{l—L—T}. (9.7)

In effect. in order lor oscillation Lo occur, the round-trip ractional gain exple{v )] must not
only compensate for Lhe round-trip fractional loss B at the mirrors, but also the internal
rannd-trip (ractional loss L. Following Eqs. [S03)-08.15) and Egs. (9.1)-(9.3), the output

power at w,, is given by
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Figure %.4: Oulpul power us function of T for various values of L.

In typical lasers. He-Ne laser for example. L + T < 1. {Both L and T are about a few

percent each.] Using the expansion In{l +r) = r for « < 1. Egs. (9.3) and (9.9) simplify to

Pf:1 - J'P{u,,..] [“0{”...}3 ]J_ (9.10)
W) = omlt D) (9.11)

MNENg(in,)
where P, ) = Ali(1,). We see that the threshold pumping rate Wi(s, } increases linearly
with the internal loss . Mareover. at a fixed pumping rate above threshold, i.e., W, >
Wilrw ). the onlput power f":::“ is inversely proportional te L. Thus, we conclude that the

internal loss £ must be minimized in order Lo obtain efficient laser action.
2.3 Optimum Outpui Coupling

From Eq. (900}, it is clear thal the outpnl power P29 depends upon T in a complicated
wav. [ many lasers go = agle, J is much less than one. typically ranging from a few percent
teafew tens of percent, Therefore. POIY goes to zevo al T = O and at T = go— L. In between
theve is an oprimum valne 2t which Uie ontpit power is maximized. This optimum value is
sl nbinest bmportanee i desigaing an ellicen laser. Tn Fig, 0000 we plot PO i) a8 0

feidon of £ for 2 wiven gy and Tor carions values of L. We sce that the aptionam T value



Topy and the optimum outpui power Pfqpl depends upon L. To determine Topy and P,o_'?‘.
we set the derivative of Eq. [9.10) equal to zero. Substituting go = aa{wm }€, we get

i PO‘J‘

T = drrp'(y“] (Tg':"f"')]

= 22 (- ) T

= 0 {9.12)

Solving for T and substituting back in Eq. (9.10), we get

Tyt = /ool = L. (9.13)
AT VI 9.14)
o = 2 (- V) :
Thus, we see that the optimum output power, and the transmissivity of the mirrors required
to abtain that. depends only upon the unsaturated single-pass gain go = aglea ) and the

internal-loss factor L. Both gy and L must be known before an efficient Fabry-Perot laser

can be designed.
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NORTHWESTERN UNIVERSITY
Department of Electrical Engineering and Computer Science

Lecture 10 - EECS 379
HOMOGENEOUS AND INHOMOGENEOUS BROADENING

Reading Assignment: YARIV - Secs. 5.1 and 5.7.
10.1 Introduction

In the generic laser theory presented in the previous three lectures, we have implicitely
assumed that all the atoms (or molecules) of the gain medium behave identically so far

as the atom-field interaction is concerned. A gain medium in which all the atoms behave

identically is veferred to as homog ly broadened. The term “broadened” signiﬁes the
fact that the gain occurs over a band of frequencies Av, the homogeneous linewidth of the
medium, around . as determined by the normalized lineshape function g(v} of Eq. (5.23).
Due to the homogeneity. the lasing modes of the Fabry-Perot (FP) resonator, separated
by ¢f2f, interact simultaneously with all the atoms in the gain medium. It turns out then
thal only one mode of the FP resonator can oscillate at a time. The reason for this single
mode operation is as follows: If there are more than one modes for which the unsaturated
gain is above threshold, then initially they all start to oscillate. But, eventually in steady
state, the one that sees the highest gain wins as it pulls the gain down, via gain saturation,
for the remaining modes to a below-threshold level. In Fig. 10.1, we illustrate both the
unsaturated and saturated gain spectra for the case in which there are three modes that see
an above-threshold unsaturated gain.

Many of the laser media, however, are not he ly broadened. In such lasers

multimode or multifrequency operation is possible. Gain media in which different groups
ol atoms interact differently witl light ol (requency v are referred to as inhomogeneously

broadened. The gas lasers (He-Ne. Art, Kr*, 0y, ete.) and most of the solid state lasers

10.1
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Figure 10.1: Gain spectra that illustrate single- mrxfr operalion of homoge-
neously broadened lasers.

{Nd:YAG, Ruby, etc.) fall into this category. In the former, the Doppler effect causes a
shift in the resonance frequency of an active atom. The shift depends upon the sptlaed. at
which the particular atom is moving. In the generic laser theory developed in the previous
two lectures, we assumed all the participating atoms to be at rest. In solid-state lasers,
on the other hand, the active atoms are embedded at fixed locations in a host crystal,
e.g., Yttrium Aluminum Garnet (YAG) in the Nd:YAG laser. Atoms at different sites see
different environments in the crystal due to imperfections in the crystal structure resulting
from impurities, strains, dislocations, etc. The prevailing environment at a particular site
causes a shift in the resonance frequency of the atom that varies from site to site.

In this and the following Lecture, we develop the generic theory of a laser that employs an
inhomogeneously-broadened gain medium, in particular, a Doppler-broadened gain medium

as in gas lasers.

10.2 Doppler Broadening

Consider an atom which is moving along the = direction with speed v. as shown in Fig. 10.2.
The resonance frequency of the atom in its rest frame is given by vy = (Qy — Qu)fh. I a

monochromatic plane wave of [requency » is also propagating along the = direction, then

10.2
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Figure 10.2: Frequency v appears as'vy = v(1 — v.fc) to a moving atom.

in the rest frame of the atom. due to the Doppler effect, it appears to have a (requency
v = v(l - v fc). Here. we consider only the first order Doppler effect, which is valid
whenever v./c < l For gases at room témperature. v, /e is certainly less than one. Thus,
if ¥ = wy, ie., if the light frequency is equal to the resonance frequency of the moving atom,
then in the rest frame of the atom. the plane wave will not be resonant with the atom.
The strength of the interaction between an atom and the lightwave depends upon the
normalized lineshape function g(v) of Eq. (5.23). For a moving atom with v. as the =

component of its velocity, g(v)will be given by

(v = vy} = Apf2r
AT T + (AR
_ A f2x
(v —wve - w) + (Ar/2)°
- Apf2r

[v = vl 1 + vafe)] + (Dw/2)2| {10.1)

where we have replaced vv./c by 1o, /c in the last approximate equality. From the above
expression, we see that in the lal [rame. where the lightwave has frequency v, it appears as
if the atomic resonance Irequency is shifted up from vy to (1 +w. /) so far as the atom-feld
interaction is concerned. We will evipliasize this fact by writing g{wy ) as G(u sl +:-=,|’c]).

where the implicit dependence on v. is noted. Thus, if the atom’s velocity component along

10.3



the plane wave is v.. then its interaction with the latter in the lab frame is proportional
to G(V sl + U.ICJ). In a gaseous medium, the plane wave will interact with all the
constituent atoms (or molecules) having different values of v.. In order to determine the
total interaction strength, we must sum over the effect of all the atoms.

Let us assume that there are N atoms per unit volume in the medi Then the b

of atoms per unit volume with the = component of their velocities between v, and v, + dv,
is given by Nf(v.)dv., where f(v.) is the probability that an atom has the z component
of its velocity between v. and v, + dv.. f{(v.) is given by the Maxwell-Boltzman distribu-
tion of atomic velocities in a gascous medium. At temperature T the Maxwell-Boltzman

distribution can be written as

M M’?}g
HNE \'Ilz'-rl-g_T exp (—m) . i (10.2)

where M is the mass of the constitutent atoms or molecules. In order to inteipret it as a

probability, the distribution is normalized such that

fw floddo, = 1. {10.3)

The interaction strength of the plane wave with all the constituent atoms of the medium

will then be propertional to the following lineshape function:
9) = [ doof(0)G(v : (1 4 0./ (10.4)

In Fig. 10.3, we have plotted the . dependence of G(v sl + u_.,r‘.:}) together with that of
f{u:) for a typical gas. The v. dependence of G'(u' sup(l x-=;‘c]) can be seen by writing it
as

Awfor
[ =wo(l +v./e)]? + (Awf2)?

(-2L\u,(‘21'rug
[v: = e{w — o) fwa]? + (eAw[2i)?

G(v : wll + vofe))

(10.5)
Thus, the v. dependence oI'G(v s pfl +|-_.{c}) is centered at vy = ofv— 1) /1y and has a full
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Figure 10.3: Piots aft:-'(v twpll + vffr:]) and f(v.) as a funclion of v..

width at half maximum (FWHM) of cAw/ug. Fo.r a typical gas, Ne for example, Av >~ 10" Hz
and vy = 5 x 10" Hz implies a FWHM of the velocity distribution as =~ 6ms~'. From
Eq. (10.2), the FWHM of the Maxwell-Boltzman distribution is given by 2(2kgT In 2/ M)'/?,
which for Ne atoms (M = 1.67 = 1072 Kg) at room temperature (T = J00K) = 1172 ms~*.
Therefore, we see that, to a very good approximation, the width of G(u sl + v,/c}) is
much smaller than that of f{e.]. This allows us to approximate G(v supll + v,j’c]) by
6(9 — vl +u=,!c]) in Eq. (10.4). We obtain

ov) = [ doof(e)8(v - i1 +v:/c))

j:i f(l‘;]é(v; — el — V””W)id”:

;‘%I(“: = ofv — w)/ve)

= gplv). (10.6)

where we have defined gp(») to signify the above approximation. Using Ee. (10.2), gnlv)



can also be written as

- 2 M MA (v = w)?
e = »\:V?-rksr’“’( ksl )

_ f] In2 )
= vr(ﬁvlgfg]'zexp( (&7, ;;]31“2) (10.7)

where we have defined the Doppler width or the Doppler-broadened linewidth Avp as

2w 2T i
Avp = =y 2 (10.8)
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NORTHWESTERN UNIVERSITY
Department of Electrical and Computer Engineering

.ECE 379 - Lecture 11
MULTIMODE LASER OPERATION

Reading Assignment: YARIV - Secs. 5.7 and 6.6.

11.1 Population Inversion and Gain in a
‘Doppler Broadened Medium

To see how Doppler broadening affects the gain in a laser, we re-examine the system of
four-level atoms. Let us assume that the pumping rate W}, is independent of the velocity
component v, Such would be the case, for example, in a gas-discharge laser where the
excitation is due to collisions of the accelerating electrons with the four-level atoms. We
first consider the case with 7, = 0, i.e., the case when there is no light present in system of
four-level atoms.

If we concentrate on the group of am that have the z component of their velocities
between v, and v, + dv;, then from Egs. (7.15) and (7.16), *.he contribution to the population

and the turated gain by this group can be written as

AN, = N,Wia, (11.1)
) = 2Py 14 u/e) (11.2)

respectively, where V,, = Nf(v,}‘(is the number of atoms per unit volume in this group. The
total unsaturated gain can be obtained by summing over the contributions of the various
groups of atoms with different v, values. The total unsaturated gain, therefore, is

a®) = [ ag(v)dv

x’w N

F f(v.}G(u vl + ﬂ.,fc}) dv,

14

2
£ :;“"gn(u), (11.3)

Lecture Notes by Professor P. Kumar ... Page 11.1



where in the last approximate equality we have used Eq. (10.6). Thus the only difterence

between the Doppler-broadened gain, Eq. (11.3), and the homogeneously-broadened gain, '
Eq. (7.16), is the appearance of the lineshape function gp(v) instead of g(v). Since, at

any frequency v, gp(v) < g{v) |because, both gp(v) and g(v) are normalized to unity and

Avp 3 Av), the gain available in a Doppler-broadened medium at a given pumping rate

is much less than that available in a homogeneously-broadened medium. This is because

in a Doppler-broadened medium, only a small fraction of the inverted atoms take part in

pmvidin_g the gain at a given frequency.

11.2 Gain Saturation in a Doppler Broadened Medium

Now we generalize to the case in which there is nonzero light intensity [, at frequency v.
Once again, considering only the group of atoms with the z component of their velocities
between v; and v, + dv,, from Eqgs. (7.29) and (7.30), we have

o) o o)
@) 1+I.,/I..(v:vn(l+u,fc})' (11.4)

where
Bwhy

I,(v Pl + U’I‘C}) = XG(v: vl + v:fc})l we)

Similac to Eq. (11.3), the total gain is obtained by adding the contributions of all the atoms.
Integrating a” (v} over v, we obtain

a{v) = /_: dv, a"(v)

- f" dv a5 (v)
o1+ L/ (v w1+ v/c)

_ NNW, [ J)G(v : w(1 +v.z0))
8 e 14 NLG(v : (1 + v./c)) /8rhy’

where in the second equality, we have substituted Eq. (11.4), and in the third, Eqgs. (11.2)

(11.6)

and (11.5). Using Eq. (10.5), the above integral can be cast in the following form:

_ AW Fto)
a(¥) = f_:du'(;\?f,/sarhv)+1{6(y:w(l+v,fc))

Lecture Notes by Professor P. Kumar . .. Page 11.2
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flvs)
x .
(v = clv —w)/w) + [2((Av/2)2 + (Av/2m)(X2L, /Brhw)) 4]
The integrand is a product of two functions, a Gaussian f(v,) [cf. Eq. (10.2)] and a Lorentzian

similar to G(v : (1 +v:/c)) of Eq. (10.5). In typical circumstences, the width of the
Lorentzian is much narrower than the width of the Gaussian. We have already noted this in
arriving at Eq. {10.6). Therefore, we can approximate Eq. (11.7) by evaluating f(v.) at the
peak of the Lorentzian at v, = c(v —1p) /vy, and pulling it out of the integral. The remaining
integral is of the form f_:dz;(x’ +0?) witha= i[(%}’ + %Bi:;—;]‘”, and is equal to
7 /a. Carrying out the above steps, we get

2
o) = XEHREE (0, = (v - /)

1
d""z
* f_: (vs—clv - w)fq,)’ + [@(av2r + (Av/2r) (N1, [8mhv)) 11f)

XNW, A
g (0= v = w)/)

"
S )
(c/u)[(Av/2P + (Avj2e) (1, f8whur)]
which using Eqgs. (10.6) and (11.3) further simplifies to the following expression for the

(1..8)

saturated gain
) = YWy o 1
& 2 [(Bvj27 + (Buf2m) (00, f8rhw)]
_ ag(v)
(14 3L, famthwr)

= 20 (11.9)
;?1+I..H,°

In the last equality, we have defined the saturation intensity for & Doppler broadened medium
by
4rlhvdv

I°= = {11.10)
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Figure 11.1: Gain and loss spectra for single-mode operation.

which is a very mild function of frequency, unlike the homogeneously-broadened medium
case. In fact, comparing with Eq. (7.30), we find that I? = v1,(1p)/v0.

11.3 Laser Action with Doppler Broadened Gain

We pointed out in the introduction to the previous lecture that it is possible to obtain
multimode operation in a laser with an inhomogeneously broadened gain. Before considering
the general multimode case, let us assume that the pump parameter W), is small so that only

one mode of the Fabry-Perot resonator is above threshold.
11.3.1- Single Mode Operation

If the mode with frequency v, sees an unsaturated gain that is above threshold, then, in
steady state, J,,, will grow to a value for which the saturated round-trip fractional gain equals
the round-trip fractional loss, as illustrated in Fig. 11.1. (See Sec. 8.4 for the homogeneously
broadened laser case.) From Eq. (11.9), the steady state I, is governed by

a(vm) = —20m)_ _ 1y p (1L.11)
1+ L,/ ¢
The threshold pumping rate for oscillation of the mode at vy, is determined by
ANW,
8

ag(vm) = 9D(vm) = —%lnR, (11.12)

Lecture Notes by Professor P. Kumar ... Page 11.4
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Figure 11.2: Quiput power versus the pumping rate for an mh.amogemmiy—
broadened single-mode laser.
. where we have used Eq. (11.3). The above equation when solved yields

8xln R
NN gp(vm)’
Above threshold, i.e., at a pumping rate W, > W), solving Eq. (11.11) leads to the following

Wilvm) = - (11.13)

expression for the light intensity within the FP resonator containing the inhomogeneously-

broadened gain medium:
o[ [ go(vm) \*
I = 1, [(_%lnﬁ) _1]

= 7e|[=2 ,_
it [(‘WL‘) 1. (11.14)
As in Sec. 8.4, the output power is given by
¢ Tpo [(We)’ _
= 2P (32) -1 (11.15)

where PP = AIP is the intracavity saturation power. In Fig. 11.2, we plot the output power
as a function of W,/W,. In contrast to the homogeneously-broadened laser case, the output
power is & quadratic function of W, /W,.

11.3.2 Multimode Operation

It is clear from Eq. (11.4) that, for above threshold pumping, the saturated gain, as given by

Eq. (11.9), is clamped at the loss line only within a narrow frequency region of approximate

Lecture Notes by Professor P. Kumar ... Page 11.5
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Figure 11.3: Gain and loss spectra for multimode operation.

width Av around vy,. This is because I,,,, the intensity at v, that builds up within the FP
resonator as a result of the laser action, saturates only that group of atoms which is resonant
with 14,. Atoms belonging to other groups get Doppler shifted out of resonance with v,
and are not affected at all. These atoms are available for providing gain at frequencies that
lie outside the vy + Av region. Because of our BSI‘.I]‘D]’}“O[‘[ that the pumping rate W, be
independent of frequency, we see from Eq. (11.3) that there is a wide frequency range over
which gain exceeds loss in the presence of light at frequency v,. This behavior is graphically
illustrated in Fig. 11.1. If there are modes of the FP resonator [i.e., frequencies at which
the positive feedback condition (8.8) is satisfied] that lie in the frequency band where gain
exceeds loss, oscillation will build up &t these frequencies resulting in multimode operation
of the laser. This situation is depicted graphically in Fig. 11.3. In a typical gas laser
Avp > ¢/2¢ » Av, and multimode operation occurs very frequently. In the He-Ne laser
that you have seen in the laboratory, £ is typically 15cm, Ay ~ 10MHz, and Avp ~ 3 GHz.
Therefore, the FP modes are ¢/2¢ = 1 GHz apart. This results in simultaneous oscillation of
two or three frequencies in the laser.

The intensity in each of the lasing modes follows Eq. (11.14) with W, depending upon
Vm via Eq. (11.13). The output power is given by Eq. (11.15) which can be rewritten as

Lecture Notes by Professor P. Kumar ... Page 11.6
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Figure 11.4: Relative output power of the various lasing frequencies under
multimode operation of a Doppler-broadened laser.

pout_ py | (Wo/Walve))" exp [-2um — o)/ (B /2527 - 1
"o (Wo/Weia) — 1 '

where W;(v,) is the threshold pumping rate at the Doppler-broadened line center, and P,

(11.16)

is the output power at vy for a pumping rate of W;,. In Fig. 11.4, we plot the relative output
power of the various lasing modes for the case where W,/Wi (1) = 2 and 2v/In2(c/21)/Avp =
0.1. For these parameters, 23 Iongitddinal modes of the FP resonator oscillate simultaneousty.

In the next lecture, we will see how the light at these various frequencies can be phase-

. locked to obtain ultrashort pulses of light.
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NORTHWESTERN UNIVERSITY

Department of Electrical Engineering and Computer Science

Lecture 12 - EECS'379
MODE LOCKING

Reading Assignment: YARIV - Sec. 6.6 and 6.7

12.1 Incoherent Nature of the Multimode Output

We saw in the previous lecture that a Doppler-broadened laser can oscillate simultaneously
in many longitudinal modes. The number M of the lasing modes is determined by how far
above threshold the laser is pumped {cf. Eq. 11.16). Let us assume that all these modes
are linearly polarized along the same divection. This can be accomplished, for example,
by intreducing Brewster windows in the laser cavity. (A TM mode sees less loss upon
reflection from a Brewster window than a TE mode. Therefore, when a mode at frequency
v goes above threshold, both TE and TM modes compete for the same gain with the latter
suppressing the former because of its lower loss.) The time dependence of the real electric

field for the mth longitudinal plane-wave mode can be written as
en(t) = Re [(2hn/e0c)* expl—jlwn + muw)t + jém]], (12.1)

where w = xcff is the longitudinal mode spacing, and I, is the intensity of the mth mode.
In general, the phase ¢, of a given mode is randomly determined and has no relationship

with the phases of the other lasing modes. The total electric field due to all the M modes is
then

A

elt) =Re| 3~ (2/o/ecac)/ expl=j{wy + mw) + jéu)| . (12.2)
me=— sl

In Fig. 12.1. we plot the time dependence of the total cutput intensity I{t) of a laser thal
ozcillates simultanconsly in 11 longitudinal modes. The random nature of the ¢,,’s causes

1{t] to fluctuate over time scales much shorter than the cavity round-trip time. If the d,,'s

12.1
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Figure 12.1: Qutput intensity of a laser that oscillates simultaneously in 11
longitudinal modes with random phases.
are also varying in Lime as is the case in most lasers, this results in temporal incoherence of
the laser. In order Lo make the laser temporally coherent, one can do one of the following to

ensure that only one longitudinal mode oscillates:

i) Operate the laser slightly ahove threshold so that only one mode sees gain higher than
the loss.

ii} Shorten the cavity length so that only one longitudinal mode can be in the frequency
region where gain exceeds loss.

iii) Introduce a tuning element in the cavity to modify the loss in a frequency selective
way. All modes except for one, in the region where gain exceeds loss in the absence
of the tuning element, see a loss that is higher than the gain with the tuning element
present.

Since all of the above options decrease the number of lasing modes to only one, the total
output power of the laser is drastically reduced. Both the total output power and the
temporal coberence time can be increased by phase locking the various longitudinal modes

as discussed in the next section.
12.2 Mode Locking

In this section, we show how the many longitudinal modes of a multimode laser can lead to

the generation of short optical pulses. Far simplicity, we assume that M is odd. Furthermore,

=
[

._l'

B |

i |
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we assume that all of the m modes oscillate with the same intensity Iy, i.e., I, = I for all

m. Later on we will point out the consequence if such an assumption is not made. ) \
Mode locking occurs when the phases of all the oscillating modes are the same, ie.,

#m = ¢o for all m. In Sec. 12.4, we will see how such a condition can be achieved in practice.

First, let us study the effects of mode locking. Substituting ¢m = ¢y in Eq. (12.2), we get

!rl
Re [(ﬂo!fn-:)m ( 2 exp( -J'mwt)) exp—jlwot ~ éo)]]

elt)

Re [(a:o;euc}”’ expli(M — nwﬂ% expl—j{uwnt — w)}]

in{ Muwt 2 .
Re [(gfoféuc}l"'%l:l(w":—;é]} expl—j(wnt - ml]

E{t) cos(wot — do), {12.3)

where we have defined the time-domain pulse envelope £(t) via

sinfwt/2)
sinc( Met /2]
sinc{ct/20) °

E£(t) = (2h/ese

= (2p/eee) M

(12.4)
and sinc(z) =sin{rz)/(xz). The total intensity is given by

sinc®( Mt /2£)

I{t) = szumﬁ-. (12.5)

Here, we point out that Eqs. (12.4) and {12.5) remain unchanged if M is not supposed to
be odd.

12.3 Pulse Width, Pulse Height, and Average Intensity

We have plotted [{t) vs. time in Fig. 12.2. Tt is a periodie function of time with period T'
determined via cT/2¢ = L or T" = 2¢/e. which is nothing but the round-trip time of the laser
cavity. The nth maxima of /() occur at 1, = 2nf/e and the peak intensity is given by

Tog = 1t} = AP0y, {12.6)
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