NORTHWESTERN UNIVERSITY

Department of Electrical and Computer Engineering

ECE 379 - Lecture 1
FIELDS AND WAVES

1.1 Introduction

As the title “Lasers and Coherent Optics” indicates, in this course we will learn the basic
principles of laser operation and properties of their coherent outputs. We will do so in a
manner that does not invoke q hanics and, i d, draws heavily on an electrical
engineer's background, namely, Fourier transforms and linear systems theory. In the first
half, we will study the simplified theory of a generic laser, deferring particular laser systems
to other courses, and in the latter half we will come to grips with col beam prop
diffraction, imaging, and optical signel processing.

Although, an introduction to applied optics is not a pre-requisite for this course, it will

be understood that most students are familiar with elt¢tromagnetic waves and optics related
material covered in freshman/sophomore physics courses. Those who are not should seek
the advice of the instructor immediately.

In this first lecture, we start by pitulati the basic concepts of fields and waves which
derstand the electromagnetic theory of light. This theory is required to

are ial to
explain the two basic facts of optics not accounted for by the corpuscular or geometrical
theory of light, namely: i) no matter how collimated, light beams always spread out after
propagating a sufficient distance (diffraction of light}, and ii) no matter how perfect a lens

one uses, a parallel or ‘perfectly’ collimated beam of light can not be brought to a point

focus.

1.2 Fields

By definition, a field is a collection of values for all of space and time. Mathematically, it is

ted by a function which depends on both the spatial position denoted by 7 (overbar

P
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1)

Figure 1.1: A representative function f(t) of time.

indicates a vector quantity) and time denoted by t. A field can be static or dynamic, scalar

or vector. A vector field requires a vector function of space and time for its description. The

temperature field, used by logists in her prediction, is an ple of a dy
scalar field and the electric field inside the parallel plates of a capacitor is an example of a

static vector field.

1.3 Waves

A wave is a field which propagates, i.e., the function describing the field gets displaced in a
given direction (the wave propagation direction) with the passage of time. We illustrate this
by way of an example. Consider a scalar field u{f,t), ¥ = (z, ¥, z), which has the following
functional form:

ulf, ) = f{t — z/e) {11)

with the function f(t) as sketched in Fig. 1.1. Figure 1.2 sketches the field as a function of
time both at z = 0 as well as z = L. We sec that the field arrives at z = L a time Lfc
later. Therefore, the function f(t — z/c) describes a wave propagating in the +z direction
with speed ¢ This particular form represents 2 uniform plane wave becnuse the function
£ has the same value for all values of ¢ and y. In Fig. 1.3, we sketch the wave ft—z/c)
as a function of z at ¢ = 0. [n the above example, the function f could represent pressure,

electric field, or any other physical quantity exhibiting wave nature.
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Figure 1.2: The wave at z =0 (left) and at 2 =L (right).
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Figure 1.3: The wave in space at £ = 0.
We now show that fields which are waves satisfy the following wave equation:
Vu(F,t) - cl., 82"——" 9., (12)
where
= & y 3 (1.3)

=35 +— e +37
denotes the Laplacian and is pmnmmoed “del squarad". Let £ = t — z/c, then u(f,t) =

J(t — z/c) = f(€) implies that & = $ % = & and 3 = 2% = 1§} Therefore,
&f = &f and =?ﬁ£.m§{=#=a. An:umpuﬁaldmwmimlytw

V3u(r,t) = % i) and ,&-é;,ﬂ = %‘{‘@; clearly satisfying the wave equation (1.2).
The wave equation (1.2) has a very important property that it is linear, ie., if w7, 1)
and ug(F, £) are two solutions of the wave equation, then o (7, t)+ bug(7, ) is also a solution

where a and b are arbitrary constants. This property leads to the principle of superposition.
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It can also be shown that u(F,t) = f(t—7-ix/c) is a solution of the wave equation for any

S, where i is an arbitrary unit vector. The wave f(t — 7 - i/c) propagat in the i directi
with speed ¢ and in the graphical example given above i = i,.

In the next lecture, we will review a few properties of the electromagnetic waves which
form the besis of the electromagnetic theary of light.

Lecture Notes by Professor P. Kumar... Page 1.4

I | 1

| e |

|

|



NORTHWESTERN UNIVERSITY
Department of Electrical and Computer Engineering

. ECE 379 - Lecture 2
ELECTROMAGNETIC WAVES

Reading Assignment: YARIV - Sees. 1.1, 1.2, and 1.3.

2.1 Maxwell’s Equations

We all know from the pioneering works of J. C. Maxwell, H. Hertz, and A. Einstein that
light beams are electromagnetic waves and Maxwell's equations form the underlying basis for
their description. In free space, devoid of all sources, Maxwell’s equations take the following
form in rationalized MKS units:

V x &ft) = -mij%‘—), (2.1)
V x hif,t) = mﬂ;‘—”, (22)
V.oqEFt) = 0, (2.3)
V- uph(f, ) = 0. (24)

Here &(F,t) and h(F, t) are the electric and the magnetic fields, respectively; V = T +
LE+i 2 (pronounced as ‘del’) is the vector differential operator; - and x denote scalar
and vector products, respectively, b two vector quantities; and eg and jip, Tespectively,

are the permittivity and permeability of free-space. In MKS units, & isin volts/meter (V/m],
h is in amperes/meter (A/m), 4r¢o = (9 x 10%)7! farads/meter (F/m), and jig = 4m X 1077
henrys/meter (H/m).
2.2 Wave Equation
Taking curl of Eq. (2.1) and using Eqgs. (2.2) and (2.3), we get

- a &e
VxV xg:-mﬁv:‘h=_'ﬂ°eﬂa—ef'
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But V x V x &= —V% + V(V - & = —V?%, giving the following wave-equation for E(F, L)

via(r, ) - 5 T =0, _ (25)
where ¢ = /1/pio¢o is the speed of light in vacuum. In MKS units ¢ = 3x 10° m/s. Similarly,
one can obtain -

VR(# ) - é E%F;‘l -0, (2.6)
which is & wave squation for the magnetic field. Note that both Eqs. (2.5) and (2.6)
are vector equations, meaning that each component of & and F satisfies the scalar wave
equation (1.2). Also, &7, £) and R(F, t) are coupled through the curl equations (2.1) and (2.2).

2.3 Properties of Electromagnetic ‘Waves

Let us illustrate some of the properties of electromagnetic waves by way of a few examples.
Consider the electric field associated with an electromagnetic wave to be &F,8) = f(t =7
3i/c)i, where ix and 7 are two unit vectors, and f(t — #-7;/c) represents a wave propagating
in the 7 direction with speed c. From Eq. (2.3) we have
i ey . -of . -] _
V- eqB(F 1) = € a,-:g+:.,-nay+:,-tgj =0.
Let £ =t —7-i/c then 3 -%%u-zg% Simﬂuly%:—?—%{mds{-= —ex 8l where
@, @y, and a, are direction cosines of iy, i.e., Ik = azlz + @iy + 0 15. Therefore, the above

equation becomes

V- ct(r, 1) = — 2 fasds + ayiy + ] % =0,

which is true for any f implying that 7 -7 = 0, i.8., the electric field associated with an

‘electromagnetic wave must be perpendicular to its direction of propag tion, This is a very
important result and we say that electromagnetic waves in a free space are transverse waves.
Let us consider another example for which

B(R, ) = [f{t = 2/c) + gt + z/c)iz, (27
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representing the superposition of & +z going plane wave f and a —z going plane wave g.
Note that we have already assumed the transverse property. Then from Eq. (2.1), we have

A
- 8
il &{m,a—“;,

e ey €

Q@
=

—m--%ﬁl =9 xéF,t)=

bewmee,me.=§,‘=ﬂ‘nmfms,

Cohr) _ L[ 197,10, _ [@[ef_d]; _9KO
T m[63£+==3-§ "‘J;[ae ael“’ %

which implies that

) = (22 11~ 2/c) = ot + 2/, (28)
i.e., the magnetic field associated with the electromagnetic wave is also a superposition of
a +z going wave and a —z going wave with one important difference that h(F,t)L&(7,t).
Hence, not only the electromagnetic waves are transverse, but also the electric and magnetic

fields associated with them are perpendicular to each other.

’ 2.4 Poynting Vector

We all know that electromagnetic waves transport power which is best described by the
Poynting vector 5(F,t) defined by

3(7,t) = &7, t) x h(F,t), (2.9)

giving the power density (W/m?) carried by the wave at position 7 and time t in the direction
of 5. The instantaneous power crossing & given surface & is given by the surface integral
[, 3-Tada, where 7, is a unit vector normal to the surface. For the second example considered
in Sec. (2.3), Egs. (2.7) and (2.8) give 37,1 = MU‘(:- z/c) — ¢*(t + z/c)] . Thus,
the power density flowing along the z direction is the difference of the power density carried
by the +z going wave and that carried by the —z going wave.
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2.5 Monochromatic Waves

In this course, we are interested in the light output of laser sources which is almost mono-

chromatic. The electric field associated with, the, electromagnetic wave of such light can be
written as

&(7,t) = RelE(F) exp(—j2mv1)] (2.10)
wlm-eviu_th:-’-, v of the } ic wave (3 x 10 Hz at lum wavelength) and

E(#) is the complex vector envelope at position . For example, the z-component of the
electric-field is then given by _
ex(F, t) = | B:(7)| cos[2mvt — 6:(F)], (2.11)

where we have introduced the polar dinates for the complex quantity E(F)

E.(F) = | Ea(F)] explida(F)]- (212)

Note that ¢, is not the z-component of a vector §. At any location 7, the field is cosinusoidally
varying with frequency v, justifying the it
After substituting Eq. (2.10) in the Ampere's Law, Eq. (2.2), we obtain ¥ x h(F,t) =
ol [Re{E(7) exp(~jwt)}] = eoRe|jwE(F) exp(~juwt)], where w = 2mv, implying that

h "

h(F,t) must also have an exponential time dependence for a monc mag

Aiei

netic wave allowing us to write _
(7 £) = RelB(F) exp(~j2mu1)]. (213)

For monochromatic waves, the Faraday's Law and the Ampere’s Law equations (2.1} and
(2.2) then simplify to
VxEF) = jpowd(F), (2.14)
Vx H(F) = —jewB(r) (2.15)
gnd the wave equations (2.5) and (2.6) reduce to the following Helmholtz equations:
ViE(F) + %25'["'} =0, (2.16)
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) w? -

VH(F) + ;,-H(a) =0 (2.17)
Also from Egs. (2.3) and (24), V- E(f) =0and V- AH(F)=0.
2.6 Intensity of Monochromatic Waves (j.rradiance)

Optical detectors, including photocells, human eyes, and photographic plates, respond to
optical intensity which is defined as the magnitude of the time average of the Poynting
vector. Using Eqs. (2.9), (2.10), and (2.13), the intensity of a monochromatic wave at point

F is given by

1{7) 1s(r. e

f_ I:;“RS[E(F) exp(—jwt)] x Re[H(F) exp(—jwt)]

, (2.18)

1
T

where T = 2r /w is the time period of an optical cycle. Evaluating the time integral, we get

o1 P

1) = 5 |RelB(r) A" (7)) = [Rel3@)], (2.19)

where §(F) is the complex Poynting vector, and the magnitude is to be understood as that
of the vector quantity inside the square brackets.
2.7 Monochromatic Plane Waves
For such waves E(F) of Eq. (2.10) can be teken as Eyexp(ik - ), where Ey is a constant
vector independent of position coordinate 7. Equation (2.10) can then be written as

&(r,t) = RelByexp{—j(wt— k- M)}, (220)

which upon introducing real and imaginary parts of the complex vector Fy = E, + jE
becomes
_ - F - T F
- S . Lo 2
&(F,t) = E, cos[2mu(t GrolB) )] + E\ sin[2me(t o/l )R (2.21)
where the wavevector k = ki with Iy 2 unit vector along k. The functional form of the

sbove equation is f(t — i - /c) with ¢ = 2xw/k, identifying it to be & uniform plane weve

Lecture Notes by Professor P. Kumar ... Page 2.5



propagating along the i direction with speed c. Since &(7, t) of Eq. (2.20) must also satisfy
the wave equation (2.5), the constant ¢ introduced above must be the speed of light in free -

space. The relation ¢ = 2p/k then also defines 2r/k to be the wavelength A of light.
2.8 Polarization Properties of Monochromatic Plane Waves

The vectors £ and E; give the polarization properties of the plane wave (2.20). In general,

the polarization is elliptical. However, when | B x Ei| = 0, then the polarization is linear;

and when B, - By = 0 with | E,| = | E:], then the polarization is circular. Furthermore, in the

Intter case if (5, x Bi)- 7 > 0, it is rightcirculer and if By x B ik < 0, Itis left circular.
For monochromatic plane waves Egs. (2.14) and (2.15) further simplify to

Fx By = powHo, (2.22)
kx ﬁo = 'EWE'O: (323)

with the spatial dependence for the magnetic field in Eq. (2.13) being given by H(F) =

Hy exp(jk - 7). Also, for monochromatic plane waves in free space, Eq. (2.19) together with

Eq. (2.20) leads to the following simple expression for itsir
= 3eociBof”. (2.24)
We finish this lecture by re-writing the plane wave electric field in a slightly different
form:
&(7,1) = Re[Epexp{—j(wt—k -7}
= 5| Eoc] cos(wt — k+7 — o)
+ 1y Boyl cos(wt — & - ¥ — doy)
+ | Boc| cos(wt — k. T = doz), (2.25)

where By = Box iz + Evy ¥y + Bor 1z = fz| Bos| exp(jdos) + 1| Eoy| exp(idoy) + x| Bos| exp(ido:)-
In the remainder of this course, we will all electromagnetic waves to be linearly
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so that Fo, = Eos = 0. The wavevector k must
assumed parallel to the z direction. In the

nolarized along i, unless otherwise noted
then lie in the z-z plane and will generally be
next lecture, we will consider the reflection and refraction of an slec-tmmagnztic wave al &

dieletric interface.
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NORTHWESTERN UNIVERSITY

Department of Electrical Engineering and Computer Science

EECS 379 - Lecture 3
REFLECTION AND REFRACTION
AT A DIELECTRIC INTERFACE

3.1 Electromagnetic Waves in Dielectric Media

In a source-free gnetic and transparent medium with dielectric constant c. = egn?,
wh=r=. n is the refractive index of the medium, the Maxwell’s equations (2.1)-(2.4) with €
replaced by ¢ lead to the following wave equation:

V(1) - "g’ g%étf.t) =0, (31
describing the propagation of electromagnetic waves with speed v = ¢/n in that medium.
As an electromagnetic wave enters the dielectric medium, the boundary condition at the
dielectric interface dictates that the frequency » of the wave must remain unchanged. Later
in this lecture, we will clarify this point further. Therefore, the wavelength of the wave in
the medium becomes v/v = (¢/n)fv = A/n, where X is the free-space wavelength defined in
the previous lecture. The electric field associated with a monochromatic plane wave in the
medium can then be written as

&(F.t) = Re[Egexp{—jlwt = K -7}, (3:2)
which is the same as that given by Eq. (2.20) with one difference that the magnitude of the
wavevector & is now given by || = K = 2x/()/n) = 2wn/A = nk (recall that in free space
k = 2x/A). In a uniform dielectric medium, all other properties of electromagnetic waves
discussed in the previous lecture remain the same and Eqs. (2.22) and (2.23) become

K xEy = powfy, (3.3)
R xHy = —-neguEy. (3.4)
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Figure 3.1: Reflection and refraction af a dielectric inlerface.
The intensity expression (2.24) modifies to
I = SeomEl. . (9

3.2 Fresnel Problerﬁ

We know [rom practical experience that when a beam of light hits a dielectric interface,
such as a pier;e of glass, a part of the beam is reflected back and a part is transmitted
obeying Snell’s laws. In this section. we derive these laws together with the [ractions of the
beam that are reflected and transmitted. (lonsider a plane wave passing through a dielectric
interface as shown in Fig. 3.1. The arrows indicate directions of propagation of the incident

plane wave at an angle 8; (relative to the interface-normal), the reflected wave at O and the

transmitted wave at 7. The electric and magnetic fields associated with the incident plane

wave are then given by

EiF,t) = RelEpexp{—ilwt = Ry-#1s (3.6)
el t) = RelArexp{-jlwt— K74, (3.7)

where H; can be [ound using Eq. (3.3). ie..
= L g xEn (3.8)

pow
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and K can be decomposed into z and 2 components as

Ry = Kq(te cos 8; +1.5in 8;), (3.9)
e ha
with K = 2xny /). Similarly for the reflected and tr ted fields, we have
. . _ 10
Za(r 1) = RelEpexp{—jlwt—Ka- 7}l (3.10)
; . _ n
Er(F.t) = Re[Hrexp{—j(wt— Kr- 7} (3.11)
3 9
Ap = Lﬁ'n x Ep, (3.12)
How .
Kr = Kr(-i: cosfg +1; sinfg), (3.1 }
&r(7.i) = Re[Erexp{—jlwt—Kr-7)}], (3.14)
he(F, t) = RelApexp{—jlwt - Rz -7}}], (3.13) _
Ay = —Rrx Er, (3.16)
Mo _
Kr = Rpliycosbr +1i. sinfr), (3.17)

with g = 270, /A and Kt = 2xna/\. We further assume the transverse electric (TE) case,
i.e., the electric-field vector of the incident wave is perpendicular to the plane of incidence.
Therefore, -
Ey= £, (3.18)
Now we consider the consequences of the houndary conditions (at the x = 0 interface) that
the tangential components of E and # be continuous. In fact, as pointed out ealier, we have
already used these boundary conditions (the fact that they be satisfied at all times) to write
the monochromatic time dependence, with angular frequency w, of Eg(F,t), ha(F,1), ér(F, 1)
and hp(F,t) in Eqs. (3.10), (3.11), (3.14), and (3.15) respectively. Furthermore, these bound-
ary conditions must be satisfied at all points in the z = 0 plane. This can happen only when
the spatial dependence of both the reflected and the transmitted fields is identical to that
of the incident field at # = 0. The fact that they be satisfied at all values of ¥ was used in
writing Eqs. (3.13) and (3.1 7) where we assumed that both g and Ky lie in the plane of

incidence  the plane containing the incident wave and the normal to the interface - which
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¥y 7

in our case is the z-z plane. Also, using Eqgs. (3.6), (3.9), (3.10), and (3.13), we must have

exp(j2n,z sin8;) = exp(j¥n,z sin 0g), giving the low of reflection
8; =0, (3.19)

i.e., the angle of incidence is equal to the angle of reflection. Similarly, using Egs. [3.6),
(3.9), (3.14), and (3.17), we must have exp(j3En;zsin8;) = exp(jnyzsin fr), giving the

Snell’s law of refraction

ny sin 0y = ny sin fr. (3.20]
Using the above derived Snell’s laws and Eqs. (3.6), (3.10), and (3.14), in order for the
tangential component of the electric field to be continuous on either side of the z = 0 plane,

we must have

Ei+Eq1, = Er-3, (3.21)
0+Ep-i. = EBr-i, (3.22)

Similarly, using Egs. (3.7), (3.11), and (3.15), the continuity condition for the tangential

components of the magnetic field implies
(e + Hy) -3y = Hr-3y, (3.23)
(Ha+ Hy) 1. = Hr-i. (3.24)

Furthermore, using Eqs. (3.8), (3.12), and (3.16) these become
m(in x Er) -3y + (1 x Ep) -] = ma(ir x Er) 3y, (3.25)
ml(in x Eg) i+ (irx Er) -1 = na(ir x Br) -1.. (3.26)
Equations {3.22) and (3.23) or (3.25) can both be satisfied only if E£x = Eg 7, and Er = Br3,.

This is because in Eq. (3.23) A3, = 0. Equations (3.21) and (3.26) then give the following

linear equations in Eg and Er

E;+Ep = Er, (3.27)
ny(Ey cosfy — Egcosfp) = nyFrcosfr, (3.28)
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which can be solved using Eqs. (3.19) and (3.20) to give the following expressions for the
field reflection and transmission coefficients:
- & _ ny cos @ — /nd —(m sinﬂ;)z‘ (3.29)
E; ny cos 8y + \/n-} — (my sin 87)*

Er 2n, cos By
- = v (3.30)
£y ny cos B + \/n;’ — (nysinfl)?

respectively. Note that both r and ¢ can be complex. Using Eqgs. (3.29) and (3.5), we define

the following intensity reflection coefficient:

) Er|? 2
= |—| =|r|°. 3.31
R ‘E; 7 (3.31)

3.3 Evanescent Waves

When &7 is greater than the critical angle defined by 8¢ = sin™ (ng/ny) for ny < m, we
know from geometrical optics that there is no transmitted wave. However, the electric and
magnetic fields do not vanish in the > 0 region. Using Eqs. (3.14}, (3.17}, (3.20), and (3.30),

for 8; > 6. the electric field is given by
- . ) — 5 .
Er(r) = Re [t Erexp {_Zn\x;x n? s:; fr l] exp {3 n‘n]:sm 0y }l (3.32)

and the magnetic field can be ohtained using Eqs. (3.15) and {3.16). We see that the field
decays exponentially along x (for x > 0) with a decay constant (‘Zr;‘).}m and
propagates along the interface (even in the i > 0 region). The field in the z > 0 region is
called the evanescent field.

In the next lecture, we will use the field reflection and transmission coefficients derived

in this lecture to analyze a Fabry-Perot etalon.

3.5
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NORTHWESTERN UNIVERSITY

Department of Electrical Engineering and Computer Science

Lecture 4 = EECS 379
OPTICAL RESONATORS

Reading Assignment.:. YARIV - Secs. 2.1, 2.2, 4.0, 4.1, and 4.2.

4.1 Fabry-Perot Etalon

A Fabry-Perot (FP) etalon is a slab of glass or any other transparent material whose two
surfaces are optically flat {i.e., the extent of any surface roughness, scratch, or pit is much
smaller than a wavelength of light) and parallel to each other. Due to multiple reflections at

the two surfaces and interference between the multiply reflected waves, such an etalon shows

interesting reflection and transmission hehavior as a function of length of the incident
light beam. In this section, we study this phenomenon for the transverse electric (TE) case.
Consider a monochromatic plane wave incident on an FP etalon. of thickness £ and

refractive index n, placed at = = 0 making an angle (‘!} with the : axis as shown in Fig. 4.1

Figure 4.1: A Fabry-Perot Etalon.
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The incident field can be written as
&(F, 1) = ReEyexp{—j(wt — kr - F)}], (4.1)

where E; = Eti, and kr = (27/A)i,. Using Eqs. (3.29) and (3.30), the field reflection and
transmission coefficients for the air-glass interface are given by (ny = l,n3 = n)

8 - /n? —sin®4
- cos By n? — sin® fy (4.2)

cos @ + yn? = siu'&;‘
2cosly (4.3)

t = .
"7 costy+y/n? —sin' by

Similarly, for the glass-air interface, my = n and ng = 1 give
n.;.osﬂf— 1 — n?sin’ 87
ry = . (4.4)
ncos b + ;;l — n2sin® 6y
{note that in this case the angle of incidence is f7)

_ 2n cos fr
=
neosfr + /1 — n?sin® 8¢

As explained in the previous lecture, both the reflected and transmitted fields must be y

¢ (4.5)

polarized and have the same frequency and wavelength (they both are in air). Their electric

fields can then be written as
i(7. 1) = Re[Egexp{—jlwt — kg - 7)}] (4.6)

for z <0 and

&r(7.t) = Re[Erexp{—jlwt —kr-[F— D} (4.7)
for = > €fcosdy. Here kg = (2r/A)[—i.sin28; — i.cos 20, kr = (2r/A). (because the
transmitted rays are parallel to the incident rays), Eg = Egiy, and Er = Eri,. The com-
plex envelopes Eg and Er of the reflected and transmitted waves, respectively, consist of
superpositions of the multiply reflected and transmitted waves and can be obtained from Ey
using Eqgs. (4.2) to (4.5). For example, for the first and second transmitted waves | and 2,
respectively (cl. Fig 4.1), E} = Ertytyexp(jnkl/cos 0r) and Ef = E}(rafta)ratzexp(jé) =

+.2
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E}riexp(js), where § = (27/A)[(2nfcosbr) - 2 tandr(nsinfr)] = k2n€tosfr. Sim-
ilarly, for the first and second reflected waves 1' and 2/, respectively, E} = riB; and
E% = (Eh/ri)tirstzexp(j#). Summing the infinite number of reflected and transmitled

waves, we get

Ep = Ejlr + raistaexp(jd) + rat lard exp(2j8) + .. ]

ralits exp(jé}
i+ PR s

and

Er = Eptityexpljnkéfcos )l + riexp(is) + raexp(238) +.. ]

exp(jnkt/cosbir)

= Eihty—m——— 4.9
hiis 1 — riexp(sf) ),
Using Snell’s law in Eqgs. (4.2)-(4.5). it is easily seen that r, = —rz and = + 4ty = 1}
the latter being a statement of the conservation of energy. Equations (4.8) and (4.9} then

further simplify, giving the total field reflection and transmission coefficients

e il = rf)exp(s6)
Ep L= rfexp(jé)
= nloemll, (4.10)
and

Similar to Eq. (3.31), the total intensity reflection and transmission coefficients become

— ARsin’{8/2) -

el = fr = T Rpy iRksnf(6/3) (4.12)
— 12

P =Tr = = ——— (4.13)

(1= R)® + 4Rsin?{§/2)"

A = = 5 -
where § = - = -nlcoslfr, and R = r} is assumed real. which from Eq. (1.2) will always be
the case because n = 1. It is easily verified that fy + I = 1. That is, for a transparent

ctalon, whatever intensily is not reflected must be transmitied

1.3
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Figure 4.2: Spectral behavior of the tr ission coefficient.
4.2 Spectral Behavior of the Transmission Coefficient

Tr of Eq. (4.13) is a periodic function in 4, Either v, n, ¢, or fir can be changed to vary §. For
the purpose of illustration, Fig. 4.2 shows Tr as a function of v. T achieves a peak value of
unity whenever §/2 = mr or (27 /A)nfcos fr = mw for m an integer, or

mc

.= Snfeos 7 {4.14)

A
- nfcosfr=m5 or v

The spectral separation between two successive peaks is called the free spectral range (FSR) -

and is given hy
(m+1)e me e

Imfcosly  Inloosfr - Infcos by (4.15)

FSR =

Similarly, whenever Eq. (4.14) is satisfied, Ry goes to 0. That is, for discrete wavelengths,
it appears as if the etalon did not exist as far as the incident light is concerned. The peaks
in transmission are referred to as resonances of the etalon. The full width at half maximum

(FWHM) Awy; of each peak is given by

a0 —FR) e
Aupg = sin 2vR | 7nfcosfr
Az (1 - R)e
(- fe 4.16
2anfv/R cos O { )
4.4
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and defines the finesse F of the etalon, which using Eqgs. (4.14) and (4.15) is

_FSR_ x
T Anp 2sin~ [154]

a1 7R

g (4.17)

For a glass etalon at normal incidence, R = 0.04; but with thin flm coatings, R can be

increased to 0.99 or better giving an F of over 300 for such an etalon.

4.3 Fabry-Perot Etalons as Optical Filters

The fact that the transmission of an FP etalon is freq v or length dependent al-

lows them to be used as optical filters. 1f, for example, the incident light consisted of

two monochromatic waves at frequencies vy and vy, then by choosing n, £, or By such that

me 2nf cos 8

for some integer m but T 4y is not equal to an integer, the light with

1= Sntcos e
frequency v; can be reflected away whereas that with ¥ can be transmitted through the

etalon unattenuated.

4.4 Optical Spectrum Analyzer

A high finesse FP etalon is often used as an optical spectrum analyzer. If the incident
light is polychromatic and band-limited to less than ene FSR, then only that [requency is
transmitted for which the resonance condition (4.14) is satisifed. By monitoring the intensity

of the transmitted light and varying the length (n or fr could be varied also) of the etalon,

the spectrum of the incident light is easily 1. We will d rate this property in
the laboratory.
4.5 Fabry-Perot Cavity

An FP cavity or a resonator can be formed with two plane mirrors (we will generalize to

curved mirrors in the later part of the course) of reflectivity f placed parallel to each other

as shown in Fig. 4.3. If the mirrors are lossless, then the tr issivity T = 1 = R. The

system of Fig. 4.3 behaves like an FP etalon with n = 1 and fr = 0. Equations (4.12)
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Figure 4.3: A plane mirror Fabry-Perot cavity.

through (4.17) then apply and the FSR = ¢/2¢. For example, if £ = I5cm (a typical value

3 x 108

2 % 0.15
veflections between the two mirrors, a FP cavity can be thought of as a feedback providing

used in many helium-neon lasers), then FSR = = 1GHz. Because of the multiple

device to anything placed inside the two mirrors and interacting with the optical field.

In the next lecture we will study the interaction of light, with atomic sytems in order to

understand the gain mechanism of a laser.
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