NORTHWESTERN UNIVERSITY
Department of Electrical Engineering and Computer Science

Lecture 5 - EECS 379
INTERACTION OF LIGHT WITH MATTER

Reading Assignment: YARIV ~ Sec. 5.4.

5.1 Introduction

A laser is nothing but an optical frequency oscillator. We all know that to make an oscillator,
one need.s an amplifier to provide gain and a positive feedback mechanism. As pointed out
in the previous lecture, the feedback is provided with a Fabry-Perot resonator. The gain is
obtained via interaction of light with a material medium resulting in Light Amplification by

Stimulated Emission of Radiation (LASER).
5.2 Light Absorption and Emission

The wave equation (3.1) applies in a transparent dielectric medium, a medium which does
not absorb or emit light. Equation (3.1) is easily generalized to an absorbing or emitting

medium by using the constitutive relation
d(7,t) = €oi(7.t) + B(F, 1) {5.1)

between the electric displacement vector d(F,t), the applied electric field &,t), and the
induced polarization {induced dipole moment per unit volume) B(7,t) in the medium. Us-
ing (5.1) and repeating the calculation of Sec. 2.2, the following inliomogeneous wave equation

is obtained

1 d%(7,t) 87, 1)
A T T (5:2)

For a monochromatic applied field. the induced polarization is also monochromatic and

V(7 1) -

similar to Eq. (2.10), p(7,t) can be written as
Bl t) = Re[P(F) exp(—j2rut)]. (5.3)
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Furthermore, in an isotropic medium at any point 7, the induced polarization, to the lowest .

order, is proportional to the applied field. Thus we can write
P(7) = eox E(F), (5.4)

defining the electric susceptibility x for the medium. In general x is complex and depend§
upon the frequency v of the applied field, i.e., x = x{v). Substituting (2.10}, (5.3), and (5.4)

in Eqg. (5.2), we obtain
V2E(F) + ‘:—:E(p) = —pg?P(F)
w? =
= —ZxwEF), (5.5)

which is a generalization of the Helmholtz equation (2.16).

We now show that a 4z propagating plane wave
E(7) = 1. Eyexpl(a + jB)z) (5.6)

whose envelope grows or decays (depending upon the sign of o} is 2 solution of {5.5). Direct

2 2
substitution shows that (5.6) is a solution of (5.5) if (& + 18)* + o = == [X'(¥) + IxX"(¥)],
[~

D!
where we have defined real and imaginary parts of y(v) via
w(v) = \'(v) + ix"(v). (5.7)
Comparing the real and imaginary parts, we must then have
af — B+ R+ (v =0, (5-8)
_ k2 D
a'= =35\ (0). (5.9)

Substituting (5.9) in (5.8), we further obtain
2 _ K
=5 [0+ von £ TR0+ (V0. (5.10)
which for ¥"(v) < 1 simplifies to (dropping — sign because 8% > 0)
B = Bl + {'(v)) = 0k = K. o (5.11)
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elt) = ixe(t)

Model of
an Atom

Figure 5.1: Harmonic oscillator model of an alom.

Thus, in a medium characterized by the complex susceptibility x(v), a plane wave of fre-
quency v, given by (5.6), will propagate along the +: direction seeing a refractive index
m and its envelope will amplify if x"(¢) < 0, or will decay if ¥*(v) > 0, or will stay
unchanged if x"(v) = 0 which being the case for Lransparent media. Mext we show that in

ordinary media x"(v) > 0, always.

5.3 Electron-Oscillator Model of a Medium

Every medium consists of atoms which further consist of heavy nuclii and light electrons
orbiting the former. When light enters the medium, under the action of its electric field
oscillating at frequency v the electrons also start to oscillate at frequency v relative to the
nuclii which stay at rest because of their large mass. The oscillating electrons re-radiate light
damping themselves in the process. When light leaves the medium, the electrons, which are
bound to the atoms, continue to oscillate at their natural frequencies eventually coming to
rest due to radiative damping. Thus the interaction of light with matter can be modelled
simply by the action of the light’s electric field on a collection of electrons bound to springs
of spring-constant « as shown in Fig. 5.1. The equation of motion for the position z of the

electron can then be written as (hecause & o iy, there is no y or = motion)

d?, dx .
mF’ = - —om— +q-&(t) i, (5.12)
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where m is the mass of the electron. o is the damping constant, ¢_ (= —1.6 x 1071°C) is
the charge of the electron, and the applied field &) at # =0 (the location of the electron)

is that due to 2 monochromatic electromagnetic wave at frequency v, i.e.,
&(t) = i, e(t) = iz Re[E(v) exp(—j2rut)]. (5.13)

In Eq. (5.12) on the righthand side. the first term is due to the restoring force of the spring,
the second term is the damping force, and the last term is the electrodynamic force on the
electron. Equation (5.12) describes a driven, damped, harmenic oscillator and its solution
must also be rr‘.orlochrumnltic for a monochromatic driving field e(t). Thus, the electron
position z(t) can be written as

z(t) = Reinulexp(—ani]L (5.14)

where X(v) is found by substituting (5.14) and (5.13) in (5.12), giving —mw?X(v) =
—kX(v) + jwemX(v) + g E{v), or

___{g-/m)EW)
X = = o ew (5.15)
Here w = 2wy and the natural frequency of ascilla;aion of the hound electron is given by

wy = 1/k/m. The induced polarization is also in the i, direction and is given by
Bt} = p(t)iz = i:Re[P(w) exp(=j2wut)], (5.16)

where P(v) = Ng_X(v) with N being the number of interacting electrons per unit volume in
the medium, which when combined with Eqs. (5.15) and (5.4) give the following expression
for the susceptibility of the atomic medium:

Nl fmeg (5.17)

W= = = e

Decomposing into real and imaginary parts, we get

vy = NEE (W —wi) Ng2 (wo —w)
X)) = meg (Wi —w?) +wlo? T 2megwy (wo —w)? + (a/2)7° (5.18)
o = Ng? wer Ng? /2 (5.19)

ey [~V T et~ Imequn (o — W) + (0]2)
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Figure 5.2: Normalized absorplion and dispersion curves.

where the approximations are valid near resonance, i.e.. w = wp. According to Egs. (5.11)
and (5.9), y'(~) gives the refractive index of the medium and thus chal‘nc.terizes the dispersive
response of the medium, wﬁereas v"{r) gives the attenuation or amplification constant and
thus describes the absorptive or amplifyving resp_o1_-|se'o{ the medium. From Eq. (5.19), x"(v)
is always greater than zero giving an a{v) which is always less than zero implying that in
oni:'rml-'y media lght is never amplified! Both x'(#) and x"(v) are plotied in Fig. 5.2. At
v =g, '(va) = 0 and \"(1g) is maximum. The fl.;].l width at half maximum (FWHM) of
"(v) is given by Ar = ¢/2x or Aw = 27rAv = 7. The extrema of ¥'(#) ocour at vy + o fém.
Far away from resofiance, both the absorptive and dispersive responses vanish with the latter

decaying rather slowly.

5.4 Normalized Line Shape Function

Using (2.14), the magnetic field associated with the electromagnetic wave whose electric field

is given by (5.6) is obtained to be

HiF) = J'.:owv x B(F) = a—j:—;‘Lf Eqt, exp[(a + jB)z]. (5.20)



Substituting (5.6) and (5.20) in (2.19), the intensity of the wave propagating along the z

direction is given by

Ii=)

Rel3 £(F) x A°(7)]

- L

= 2P0WEn exp(2az)

= [(0)explaz), (5.21)
where I,(0) = E2S/2pew. Thus the intensity attenuation (or amplification) coefficient a

is twice the field attenuation (or amplification) coefficient a. Using (5.9), (5.11), and the

expression (5.19) for ¥”(v) obtained via the electron oscillator maodel, we get

-2k Ng2 /2
alv) ok Jmegwg (wo — w)? + (o2
_ __Ngk 1 Apf2
T 2nmeqwo 27 (v — v)? + (Av/f2)?
_ Ngtk 1 o __Ng
= S mes F9(v) = dmm!og(ﬂ. (5.22)

where g(v) is the normalized line-shape function defined by

_ Apf2x _ Aw
IV = T+ (Aof2F (@ = w0l + (Bwf2F (5:23)

It is easily verified that f” g(v)dv = 1. Also from Eqgs. (5.15) and (5.19), we sce that

lv) e Av
Vie)  2wo—w)  2w—v) (5.24)

which seems independent of the detailed model leading to (5.18) and (5.19). It turns out that
equation (5.24) holds quite generally.
In the next lecture, we will explore ways by which a positive value for a(v) can be

achieved.
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NORTHWESTERN UNIVERSITY

Department of Electrical Engineering and Computer Science

Lecture 6 - EECS 379
ENERGY LEVELS AND RATE EQUATIONS

Reading Assignment: YARIV - Secs. 5.1, 5.2, 5.3, and 5.5.

6.1 Introduction

In the previous lecture, we saw that ; classical electron-oscillator model of an atom gives
‘a negative amplification coefficient for a wave propagating in the medium. To see how
a positive coefficient is abtained, we need Lo consider the quantum mechanical properties
of the atoms constituting the medium. We will do so, however, in a manner that relies

minimally on the quantum mechanical concepts.

6.2 Atomic Energy Levels

According to quantum mechmics, the e.I.en;Ll'runs orbiting the nuclei in the atoms of a medium
accupy discrete energy levels, a few of which are sho;ﬁ'n in Fig. 6.1. Under the action of an
applied electromagnetic field, the electrons make the so called “quantum jumps” between
the various energy levels, emitting or absorbing discrete quanta of electromagnetic energy

called photons. For example, if a monochromatic wave of frequency » is incident on an atom

Figure 6.1: Typical energy-level dingram of an atom.
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Figure 6.2: Energy-level diagram of a two-level atom.

whose energy levels are shown in Fig. 6.1, then an electron in level 2 can make a transition
to level 1 emitting a photon of frequency ¥ = v = (@2 — Q1 }/h in the process. The emitted
photon is coherent with the incident photons, i.e., the spatio temporal dependence of the
electromagnetic field associated with the emitied photon is identical to that associated with
" the incident photons. Here f is Planck’s constant (= 6.67 x 10~¥ Js), and §); is the electron
energy in the ith level. Vice versa. an atom in level 1 can make a transition to level 2,
if v oy, absorbing a photon of frequency v in the process. Furthermore, m electron in
level 2 can jump down to level 1 {or 0}, spontaneously emitting a photon of frequency vy [or
{Q2 — Qu)/h].'even in the absence of an applied electromagnetic field. This process takes
place because all electrons eventually.like to be in the ground state of their respective atoms;
ground state being the state of lowest possible energy. In this case, the emitted photon is
incoherent hecause the electromagnetic field associated with it has no relationship with the

applied field. Transitions of the former kind (which depend upon the presence of an applied

electromagnetic field) are called induced or stimulated transitions wh those of the latter

kind are called spontaneous fransitions.
6.3 Spontaneous and Stimulated Transition Rates

Let NV be the number of atoms per unit volume in a medium whose atoms have only two
relevant energy levels as shown in Fig. 6.2. The electrons of the atoms can then cunly be
in these two energy levels. Let N (IV;) be the number of atoms per unit volume whose

electrons are in level 1 (2). then

N=N + Na. (6.1)
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l"‘urtl:l.ermore, let I, be the intensity of a monochromatic plane wave of frequency v propagat-
ing in this medium along the = direction. Then, quantum mechanics provides the following
transition rates for the electrons of these atoms.

a) Absorption: The rate at which photons of the incident light are absorbed, causing the

electrons of the atoms to make transitions from levels 1 to 2 in the process, is given by

dNy

T a = Wi(v)Ny, (6.2)
where
ATl
Wilv) = thut,."{”}
= Bul.fc (6.3)

is the induced transition rate to be interpreted later, and By is the Einstein B coefficient.

If p, is the density of photons of frequency ¥ in the medium, then
I, = hvep,, (6.4)
and the inducel transition rate can also be writien as
Wilv) = hueBiap.. (6.5)

b) Stimulated Emission: The rate at which photons are coherently added to the incident
light field and the electrons of the atoms make transitions from levels 2 to 1 in the process,

is given by
i& st

ot

= —Wi(v)Na. (6.6)

2=1

c) Spontaneous Emission: The rate at which the atoms make spantaneous transitions

from levels 2 to 1, emitting incoherent photons in the process, is given by

O .
dt |, tm
= —AnMNa, (6.7)
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where Ay = 1/ is the Einstein A coefficient or the spontaneous decay rate; it is a charac-
teristic of the atoms. Note that, as intuitively expected, the rate of absorption is proportional
to Ny, the number of atoms per unit volume in the lower state of the atoms [cf. Eq. (6.2)).
Similarly, the rate of stimulated or spontaneous emission is proportional to Na [cf. Eqgs. (6.6)
or (6.7)]. Furthermore, the absorption and stimulated emission rates are proportional to I,
via the induced transition rate W;(v) of Eq. (6.3), which can be simply interpreted in the
following ‘way‘. A1, /hy is the number of photons arriving per second in an area A% in the
vicinity of an atom and g(v)/ts is of order 1 for v = vp. Here, g(v) is the normalized line
shape function defined via Eq. (5.23) in the previous 1ecm.re. For v == va, g(v) = 2/rdw;
therefore, g{v)/ty = 2/rAvly. But. Av = ¢/2x, i.e., it is proportional to the damping rate
in the electron-oscillator model considered in the previous lecture. According to quantum
theory, however, an excited atom in level 2 is damped via spontanecus emission with rate
1/t2,. Thus, the width of the normalized line shape function provided by the quantum theory
is expected to be Aw == 15} showing that Aviy =1 or g(V)ﬂn."_' 2/x. Thus, it follows that
the rate of stimulated emission is proportional to the rate of arrival of the incident photons

in an area A? in the vicinity of the atom; a result which is intuitively very clear.

6.4 Rate Equations

Equations {6.2), (6.6) and (6.7) are the building blocks of more complicated rate equations

involving many more levels of the atoms. Corresponding to these atomic rate equations,

there is a rate equation for the growth or decay of the incident wave. Noting that with each

atomic up or down transition, there is a corresponding absorbed or emitted photon from or

to the incident wave, we have

d, dN. st P
bl __ | M +ﬂ| , (6.8)
dt Jiotal dt |, dt ]y, dt
. dp, _ dp ) L .
Since & = S e Eqs. (6.4), the following rate equation is easily obtained:
di, i, N, |“ )
= b | =2 + =2 . : {6.9)
d= ( dt | _, dt |,_,
6.4
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where we have neglected the spontaneous emission term. This s justifiable whenever the
incident intensity is large. Substituting Eqs. (6.2) and (6.6), the above equation becomes

df,
dz

—hy [Wi(v) Ny — Wi(v) No)

hy Wi(v)(N2 — My). (6.10)

Note that in Eq. (6.9), we have not included the spontaneously emitted photons because they
do not add coherently to the incident wave. In fact, these photons degrade the monochromatic
nature of the incident wave. For a large /,, the contribution of these photons is negligible,
i.e., the induced transition rate is much larger than the spontaneous transition rate [cf.
Egs. (6.2)-(6.7)]. Substituting (6.2} in (6.10), we get

dl, _ Mg(v)(Na - Nl)lp

dz 8wiy (©.11)
which when compared with the derivative of Eq. (5.21) gives
2 -
o) = XS0 = M), 12

B tn
Thus, we have a mechanism for gain: if somehow N, > Ny, then a(v) > 0 and the intensity
of the incident wave will grow. At temperature T, however, thermodynamics dictates that

%j = exp|—(Q@2 — @u)/kst), (6.13)

where kg is the Boltzman constant. At T = 300K (room temperature) for vy ~ 5 x 10'*Hz,
this gives Na/N, = exp(—huvo/kpt) ~ exp(—80) = 0. Therefore, under normal conditions
N3 € N, leading to a negative a(v), consistent with the classical electron-oscillator model.
In the next lecture, we will see how N3 > N, can be achieved. We conclude this lecture by
filling in a few details.

Noting that a(r) = 2a(r) and using Egs. (5.9) and (5.11), we get

_nXg(v)(N> — M)

Tomity: (6.14)

X') = ~Fa(v) =

x'(v) is obtained using Eq. (5.24), which we have already noted to be independent of any

particular model for the gain.
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When I, is zero and (Np/N,) is not given by (6.13), but let us say Ny > M, then
(N3 — My} decays to the equilibrium value given by (6.13] via Eq. (6.7) whose solution is

Na(t) = Na(0)exp(—t/in). (6.15)

Ni(t) = Ni(t) can be calculated using Eq. (6.1).
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NORTHWESTERN UNIVERSITY
Department of Electrical Engineering and Computer Science

Lecture 7 - EECS 379

POPULATION INVERSION AND GAIN SATURATION
Reading Assignment: YARIV - Secs. 5.5 and 5.6.

7.1 Population Inversion

. We noted in the previous lecture that in order to obtain a pesitive amplification coefficient
a(v) [cf. Eq. (6.12)], one needs N; > Ny. However, in thermal equilibrium, Eq. (6.13) die-
tates that Ny < Ny. Thus, in order Lo obtain gain we need to somehow break the thermal
equilibrium and create the so called population inversion ir.x the amplifying medium. It turns
out that if we consider only two energy levels of an atom, it is imposible to achieve the
N; > N, condition. As we will see in a homework problem, the best one can achieve is
Ny = Ny or Mg — Ny = 0 implving zero absorption even for a normally absorptive medium.

This phenomenon is called absorption saturation or bleaching.

7.2 Population Dynamics in a Four-Level System

Consider a medium consisting of ¥V identical atoms per unit volume whose relevant energy
levels are shown in Fig 7.1 along with the various decay rates. The condition Ny > N; can
also be achieved using only three energy levels of an atom and will be considered in another

homework problem. Tf N; is the density of atoms in level 7, then we must have
N =N+ N+ N2+ Na. (7.1}

The decay rates t3', t3, t37, t3". £, 4. respectively, are the rates with which the electrons
in the respective upper level decay to the corresponding lower level in a free atom. For
example, 3" is the rate with which the electrons in level 3 decay to level 0 via spontaneous

emission or any other non-radiative process. These rates are properties of a specific atom
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Figure 7.1: Energy-level diagram of a four-level atom.

and can either be theoreticallf calculated or cxptlarimenr.ally measured. They can also be
modified by influencing the surroundings of the atom. Further assuming that only 33,37,
and ;! are nonzero, i.e., t5' = t3' = ;' = 0 (in essence, we are assuming that the electrons
of the atoms, for example, once in level 3 can not jump directly to level 1 etc.), we obtain
the following rate cquations for the population densities of the various levels:

dNy Ny

N N L, 72
dt W'f @7 2
AN, . Ny M

T Tww i
N Ny N (7.4)
dt [T '

diNg Ny .

o _ 05w N, 7.

i % »No (7.5)

Here, W, is the pumping rate with which the electrons are transferred from level O to 3.
The pumping process is responsible for breaking the thermal equilibrium and is realized in
practice in many ways. For example. in gas lasers fudl as helium-neon or argon-ion (neon is
the active atom in the former and singly ionized argon in the latier), the energetic electrons
of an electric discharge collide with the active atoms to push the atomic electrons to the
relevant upper levels. )

Under steady state pumping conditions. the rate Egs. (7.2)-(7.5) can be easily solved by

setting the time derivatives equal to zero. Equations (7.2) and (7.5) give, respectively,

NO = WtnVE, (1.6)

7.2
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NO = WG, (1.7)

whereas (7.3) combined with (7.2) leads to
0 i
N = Ng‘—- = Wptn Ng (7.8)
32

Substituting Eqs. (7.6)-(7.8) in (7.1), we get

N
N 7.9
O T 14 Wty + ta + ) (19)

In practice, one chooses the levels such that ta 3 &y, ta, simplifying the above equation to

N
Dot o, 7.10
No~ 13 Wytn (7.10)

which when combined with Eqs. (7.6)-(7.8) yields

Wt N

N o~ —EL g, 7.

! 1+ Wptn 0 (r.11)
Wt N

NO o BT .

Tz 1+ Wytay' (7.12)
WotnN

N o —ERT g, {113

M T+ Wyin 0 (1.13)

Thus, in steady state, the population inversion is given by

W,
(tay — b)) =2 oVt

~ , 7.14
T+ Wytn (7.14)

W, N
0 _ ~ B
Np - N 1+ Wyin

which is greater than zero for any W, # 0. The above equation is further simplified to
AN® = N = N = W, Ny, (7.15)

because for many laser systems Wty < 1. Finally, substituting Eq. (7.15) into (6.12), we
get the following amplification coefficient:

INW,

e, (7.16)

A
aglv) =

where we have subscripted a with a 0 for reasons which will become clear in the next section.
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7.3 Gain Saturation

According to Eqs. (7.16) and (6.11). the incident light intensity I, is amplified exponentially,
1,(z) = L,(0) explao(v)z], (7.17)

even under steady state conditions. This would imply that for a nonzero W, the input
" intensity would continue to grow without bound as the beam propagates in the medium.
Such an unphysical result is due to the fact that in the rate equations (7.2)-(7.5), we have
neg!ec’ted to include the stimulated transition terms discussed in Sec. 6.3 [Eqgs. (6.2) and (6.6}.
These terms are proportional to /, and hence can only be neglected close to the input end
. of the amplifying medium. Once I, grows to a large value (how large? we will see later),
these terms play a crucial role in determining the net gain coefficient.
Because of the presence of g(~) in the gain coefficient a(v) [cf. Eqs. (7.16) and (5.23)],
the latter is significant only for # = w. Therefore, we assume that the inpul beam has a
frequency v = vy, Note that Aw appearing in g{v) [see Eq. (5.23)] determines the bandwidth
of the optical amplifier. Since. such a beam can cause transitions between levels 1 and 2
only, the rate equations (7.2) and (7.5} stay the same whereas (7.3) and (7.4) get modified
to [cf. Egs. (6.2) and (6.6)]

NN

- S5 Wi v )Ny = Wilw) Ny, (7.18)
dt tiz  Ia
W N NN+ W) s, (7.19)
di in 4

Once again, in steady state. by setting the time derivatives in Eqs. (7.2}, (7.5), (7.18),

and (7.19) equal to zero, we get

NS = W,N0ta. (7.20)
NP = WNGt, (7.21)
Ny oz 0
0 = 222 L Wiw)[N? — ND), (7.22)
v tn
o
= 4!\!’_, - ;E = Wi(w)[NY — N3] (7.23)
21 1
T4



The above set of linear equations can be trivally solved by making the same I as

those made in Sec. 2, namely, ty 3 £, ta, and Wty < 1 (we also assume Wi(v)t, < 1), to

give
N o~ 0, (7.24)
NS o0, (7.25)
N® o~ _WolNgtn . (7.26)

? 1+ Wilv)ta
Substituting the above twoequations in {7.1), we get the following equation for the saturated
population inversion:

WoNty . WoNin (7.27)
T# Wty + Walu)in — 1+ Wilv)ta’ ’

which when further substituted in Eq. (6.12) gives the following saturated gain ca?ﬁcieﬂt

AN o D =

MNWoglv)  _ aglv)
Se(L+ Wilwhtar) | L+ Welwim (7.28)

where ag{v) is the so called unsaturated gain coefficient as given by Eq. (7.16) for I, = 0.

a{v) =

Equation (7.28) can also be written as

aglv)
1+ L/1L(v) (7.29)

where the saturalion intensity I.(v) defines the intensity for which the net gain drops to %

afw) =

the unsaturated gain value and is given by [using Eq. (6.3)]

8h .
I(v) = F’;(—:]. (.30)

"Thus, the unsaturated gain coefficient ag(v) can be used in Eq. (7.17) as long as [, < Ii(v).
But as soon as I, approaches the saturation intensity [,(v), the saturated coefficient a(v)
of Eq. (7.27) must be used. Physically, the reduction in gain is due to depletion in the
population inversion.

A laser is formed by placing the gain medium considered in this lecture inside a Fabry-
Perot resonator considered in lecture 3.3. In the next lecture, we will consider this problem

and derive the conditions which must be satisfied for laser action to take place.
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NORTHWESTERN UNIVERSITY

Department of Electrical Engineering and Computer Science

Lecture 8§ - EECS 379
LASER OSCILLATION

Reading Assignment: YARIV - Sec. 5.7.
8.1 Fabry-Perot Laser

Consider a Fabry-Perat (FP) resonator formed by mirrors of reflectivity A (and transmis-
sivity T’} as shown in Fig. 8.1. We assume that the mirrors with cross-sectional area A ave
lossless so that R + T = 1. To provide gain. let us suppose that the interior of the FP-
resonator cavity from = =0 to = = / is filled with a medium consisting of 4-level atoms.of

the kind considered in Sees. 7.2 and 7.3. We would like to calculate the field
= . 2w
ElF) =i Eqn ex])UT:}, ==L (8.1}
of the output plane wave in the region = > [ resulting from an incident plane wave of
[requency v = wy whose electric field is given by
P 2rw
E(7) =14, E, PKPUT:L z< . (8.2)

We do so by summing the fields of the multiply reflected piane waves within the FP cavity
(ef. Lecture 1). Due to presence of the gain, each partially reflected compenent is multiplied
by an exp(e 4 j3)f] lactor in propagation from = = 0 to = = £ [cf. Eq. (5.6}]. Here, both o
and g are functions of ¥, From Eq. (5.21) a(r) = a(v)/2, and using (5.11), (5.23), and (6.11)
3w} = kL + e
= k[ +\1w)/2)
= k4 p,%;‘i“.n:u,. (8.3)
Superimposing all the partially rellected waves at the output. we get
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Figure 8.1: Schematic of a generic Fabry-Perot laser.
Eou, = Ein{VT explla+js)]VT
+ ﬁexp[{t\ +jB]f]\/Eexp[(c\ +Jﬁ)f}\/§ exp[(_u+j5]f|ﬁ

+ VTR explS(ec+ i) VT + .. }
T expl(e + j4)f)

= - 8.4
1= Rexp[2{a + nnflE'“ ®4)
Since [ x |E[%. we obtain the following expression for the intensity gain
Gy = tout - \Eou.
fin Ejpy
T expla(r){] (8.5)

11— Rexpf{alw) + 2j3(+)}]2
8.2 Lasing Conditions
From Eq. (8.5). we see that in steady state there can be finite Ioyy even when [; = 0. This
happens when the denominator in the right member of Eq. (8.5) equals zero, i.e.,
R oexp[{aiv) + 23w} = 1. (8.6)
The above is a complex equation implying the lollowing two conditions for oscillation (laser
action) Lo build up within the Fabry-Perot resonalor:
L
alw) = -3 n R, (&8.7)
el = msfl. (8.8}
The former is a statement of energy conservation in steady state - the round-trip fractional
gain explal )] must compensate for the ronnd-trip lractionnal loss # - whereas the latter is

3.2
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Figure 8.2: Gain and loss for W, < W,.

the Fabry-Perot resonance condition giving frequency values w,, for which oscillation builds

up. Substituting d(v) from Eq. {8.3) inte Eq. (8.8). we get

[ me

£ alwey = €. 89
v el =55 (8.9)

where, to a very good approximation, we have put ¥ = wy in a{v). The above equation when

solved assuming ncalmg)/2rde < 1 gives

mc
v = 55 (2.10)

The shift in v, when nca{rg)/27 Av is not negligible, is approximately given by n caf{vg)(vo—

v )27 Av and results in what is known as the frequency pulling effect.
8.3 Lasing Threshold

The first condition, Eq. (8.7). determines the minimum pumping rate W, needed for laser
action to start and the resulting ontput power Py Using Eq. (7.29), this condition can be
written as '

ugl v ) 1
— e = : 11
AT (®11)

When W), = 0. from Eq. (7.16). agle) is also zero and the above cquality is not satisfied. No
laser action takes place and £, the intensity within the FP resonator. stavs zero. ( Remember,

we are assuming that i = 1) For 1V, > 0. ayle) > 0 bt [, vemains wero until the
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Figure 8.3: Gain and loss for W, = W,.

above equality is satisfied, i.e.. until agl¢) = —(1/#}In f. Equation (7.16) then determines a
minimum W, = W,, called the threshold pumping rate, given by

dxln R

Wy = =
! A Ng{v)

(8.12)

at which the round-trip fractional gain expla(v}f] exactly compensates for the round-trip
fractional loss R. For W, < W, ag(r) < —(1/#)In R resulting in the round-trip gain that is
less than the round-trip loss. Figure 8.2 illustrates the W, < W, case and W, = W, case is
shown in Fig. 3.3, In the former case. not only does [, stay zero, any initial {1, will also decay
to zero. Whereas in the latter, any initial £, will maiutain its value because the round-tiip

fractional gain equals the round-trip lractional loss.
8.4 Output Power

When W, > W, the unsaturated gain coefficient ag(#) exceeds the loss coefficient (—1/¢)In R
wver a range of [requencies as illustrated in Fig. 3.1. The round-trip {ractional gain is larger
than the round-trip [ractional loss and light at these [requencies is amplified as it bounces
back and forth between the two mirrors of the FP resonator. However. positive [eedback or
constructive interference occurs ouly if there lappens 1o he a cavily resonance v, at some
frequency in the band that is wnplified. We suppose that the FP-cavity length is such that
P == e 20 = . that s, the approximate cavity resonance condition (8.10) is satisfied at
the maximum of the gain curve, In this case. Jaser action will oceur at v = sy and f will

a3l
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Figure 8.1: Gain and loss for W, = W,

grow even when [ (1) = 0.

Because at v = wp, the unsaturated gain coefficient is larger than the loss coefficient, it
would seem that [,, will grow without a bound. However, as [,, increases from a negligible
value. the net gain [gain minus the loss) is del.érrnine(l by the saturated gain coefficient a{vg)
and not by the unsaturated gain coefficient ag(ug). I, will then grow Lo a steady-state value
at which the saturated round-trip fractional gain equals the round-trip [ractional loss as

illustrated by the thin curve in Fig. 8.1 From (3.11}), the steady-state [, is governed by

_ ag(tn) — _l
() = TG AT I In R,

which when solved for [, gives

-~ ag(wp)f

{, = f,[m).[ WA l} 3 (8.13)
Here f,(1%) is the saturation intensity at vo [cf. Eq. (7.30)]. Using Eqs. (7.16) and (8.12),
W, 5
he = (ﬁ -1) Liw). (8.14)

which shows that above threshold the steady-state intensity is linearly proportional to the
pumping rate. [,,. however, is the intensity within the FP resonator. The output power Fyyy
{rom one end of the resonator can he caleulated by multiplying ., /2 with the transmissivity

T and area - of the end wirror. giving
gy sl W,
F’,,l"_ = ;-'1"——.,” (H_"N = L)
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Figure 8.5: Outpul power versus the pumping rate for a genevic laser.

where Py{1ry) represents the saturation power of the laser at v, The 1/2 factor arises hecause

the total intensity at any point within the resonator has equal contributions from a left-going

wave and a right-going wave. [n Fig. 3.5, we have plotted the output power Py as a function
of the pumping rale W, The slope above threshold is given by T'Py{s)/ W, whicl is inversely
proportional to Wy, This slope directly determines the efficiency with which power from the

pumping source is converted into light power,
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