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Figure 12.2: A train of mode-locked pulses as predicted by Eq. (12.5). Top
curve is for M =5 and the bottom for M = 10. Compare the
bottom curve with that in Fig. i2.1.
because sinc(z) = 1 for = 0. To get an estimate of the width of the pulses, we define the
pulse width to be the time between the peak and the first zero. This definition is not exactly
full-width at half maximum (FWHM), but very close to it. From Eq. {12.5), the first zero

after the peak occurs at ¢ —t, = 2¢/Mec. Therefore the pulse width Ty is given by

2%
H=a (12.7)

The average intensity can be determined by integrating over one period as follows:

T
I = if;nd:

/e sine?( M sine(Met/2)
2 j

smc'(ct}"’f} dt
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Figure 12.3: Mode locking can be achieved by introducing a fast shutter in the
laser cavity.
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where we have defined ¢’ = ct/2f in the third equality, and the approximation holds for
M=l

Let us consider the example of an Ar™ laser. The typical laser cavity length is £ = 1.5m
corresponding to T = 2¢/e = 10ns. For far-above threshold pumping, up to 100 modes can
oscillate simultaneously. When such a laser is mode locked, we get v = 100 ps where 1 ps is
10-"*s. The shortest pulses to date have been obtained from a dye laser which are only 28 s
long (10s = 10""%5). For a l,ﬁm. cavity, this would imply that M = 357, 143. That is, more
than three hundred and fifty seven thousand modes are simultaneously locked.

From Eq. (12.7), the average intensity is just M times the intensity of each mode and
from Eq. (12.5) the peak intensity is M? times the intensity of each mode. Thus for a given
average intensity, by locking M modes, the energy of T second time duration gets packed
into a short pulse of T'/M second duration.

[n real lasers. the intensities {/,,} of the various oscillating modes are not the same.
For example, in 2 Doppler-broadened laser, they follow a frequency dependence of the kind
shown in Fig. 11.4. What effect do the varying intensities have on the mode-locked pulses?
It turns out that the pulse width is still determined by the total number of modes whereas

the pulse shape depends upon the detailed frequency dependence of the made intensities.
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Figure 12.4: An ezample time dependence of loss for mode locking via loss
modulation. .

12.4 Methods of Mode Locking
-

In order to mode lock, one somehow needs to force all the lasing modes of a multimode laser
to oscillate with the same phase. This can be accomplished by modulating either the gain
or the loss of the laser with a period that is equal to the round-trip time of the laser cavity.
Since the round-trip time in many lasers is on the order of 10's of nanoseconds, the required
modulation frequencies are quite large (Lﬂ(l MHz for 10ns round-trip time). The gain can
be modulated by pulsing the pumping rate W,. This method is used in mode locking of dye
lasers, which are optically pumped. The loss can be modulated by introducing a shutter
in the laser cavity (see Fig. 12.3) that opens and closes at the required repetition rate. An
acousto-optic modulator is used as a fast shutter in many lasers.

Without going into a detailed mathematical analysis, one can understand graphically
how mode locking is achieved hy modulating the loss. Assume that the gain is constant
whereas the loss is modulated with time _depéndenoe as shown in Fig. 12.4. Then a light
pulse of duration 7, = r that arrives at the shutter when the loss is low will pass through the
shutter unattenuated. In successive round trips, it will be totally unaware of the presence

ol the shutter. Light arriving at the shutter at other times, h r, will be att ted

Thus, regardless of the fact that the gain is present at all times, if the loss is modulated with
period T. the laser output will be in the form of short pulses of width 7, corresponding to

loeking of many longitudinal modes.
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NORTHWESTERN UNIVERSITY
Department of Electrical Engineering and Computer Science

EECS 379 - Lecture 13
PROPAGATION OF MONOCHROMATIC LIGHT BEAMS

Reading Assignment: GOODMAN - Secs. 2.1 and 2.2.
13.1 Introduction

So far in this course, we Lave concerned ourselves with the generation of monochromatic
light using lasers. Our development has relied on plane waves which have infinite transverse
extent. In the remainder of this course, we will study properties of light beams with finite
transverse extent which are the outputs of real lasers such as a helium-neon laser. We start

by learning how light beams propagate in free space.
13.2 Field Normalization

The electric field associated with a monochromatic wave is given by Eq. {2.10) which together
with Eqs. (2.13) and (2.19) gives the intensity associated with such a wave at position . Since
the outputs of most lasers are linearly polarized, and to simplify the notational complexity
of the succeeding formulae, we adopt the following scalar wave notation. The electric field

associated with a polarized monochromatic wave will be written as
u(F.t) = Re[lf(F)exp{—j2nui}]. (13.1)

where, for example, if the field is » polarized &7, 1) = u(#,1)i;. In the above equation U(F)
is a complex function of the spatial coordinate # and has been normalized such that the

intensity associated with the monochromatic scalar wave is given by

ir = U (13.2)

13.1
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Figure 13.1: Spatial propagation schematic.

For a given E(), the function U(7) is easily deduced. The itude is obtained using

Eqs. (2.13) and (2.19) and the phase is the same as that of £{F). In terms of U/(7), the
Helmholtz equation (2.16) reads

we
VU(F) + = U(F) = 0. (13.3)
P
13.3 Free Space Propagation: Problem Formulation

In most propagation problems of interest, we are concerned with the scenario sketched in
Fig. 13.1. The complex field envelope [/(F) associated with a light beam is given at a
certain plane, say the = = 0 plane. and we need to find the envelope at another plane L
meters away. In principle, this can be done by solving the spatial differential equation {13.3)
consistent with the boundary condition at = = 0 and substituting = = L in the solution o
obtained. There is, however, another approach to the solution of this problem that bears
a close resemblance to the theory of time invariant linear circuits with which an electrical

engineer is intimately familiar with. In this approach. the free space propagation problem
can be stated as follows: We are given the input feld

Ui{ﬁl}EU(FH:-u=U[.r=x|_.!|l'=yl,z=|]) (13.4)

to a system which consists of L meters of free space as shown in Fig. 13.2 and we need to

find the output field

Ualp) = UF)lar = I{r = apy = yo. = = L) (13.5)

13.2
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Figure 13.2: System representation of spatial propagati

at = = L. Equations (13.4) and (13.5) define the input and output fields in terms of
the 2-dimensional position vectors, /1 = (z1,11) and g2 = (%2, y2), spanning the input and
output planes at z =0 and z = L, respectively. The system of Fig. 13.2 is governed by the
Helmholtz equation (13.3) which is linear and shift-invariant as opposed to the linear and
time-invariant differential equations describing linear electrical-circuit systems. This analogy

is further elaborated on in the following section.

13.4 Time-Invariant Linear Systems

Before discussing 2-dimensional systems. let us recapitulate the methodology of time-domain
linear systems. Consider the time-invariant linear system shown in Fig. 13.3 with an input
waveform f(f) and an output waveform g(#'}. Time invariance means that if g(t') is an
output to an input f(t), then the output to an input signal f{t — to) is given by g(t' — tp).
Similarly, linearity implies that if g;(¢') and ga(t') are the outputs, respectively, to the inputs
filt) and fa(t), then the output associated with an input signal afy(t) + bf2(t) is given by
- agy(t') + bgy(t') where a and b are arbitrary constants. The above two properties follow from
the time-domain linear differential equations describing the time-invariant linear systems.
For time-invariant linear systems, the output g(t') can be obtained from the input f(t)
either in the time domain using the system’s impulse response function h(t) or in the fre-

quency domain using the

'y 's transfer funct i:(u}. In time domain, the output is

given by the convelution integral

all’y = f{u FOME — 1), (13.6)

13.3
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Figure 13.3: Time domain analog of a linear shift-invariant system.
whereas in the frequency domain the Fourier transform f{w) of f(t), as defined by
jiw)= [ defierexplion), (13.7)
is related to the Fourier transform glw) of g{t') via
#lw) = hlw) flw). (13.8)

where hi(w) is the Fourier transform of h(t).

13.5 Two-Dimensional Linear Systems

The spatial system shown in Fig. 13.2 can be analyzed in a similar fashion because the system
is linear and shift invariant. In space domain, linearity means that if [7,(52) and U.(g2),
respectively, are the output fields associated with the input fields I, (5) and U35 ), then the
output field associated with the input field aliiy (51 )+bUs(5,) is given by alloi(fz)+bUsa{52).
This linear property follows from the definitions (13.4) and (13.5) of Ui(f) and U,(f2),
respectively, together with the fact that [/(7) is a solution of the Helmholtz equation which
is linear. Similarly, shift invariance implies that if U,{;) is the output field to an input field
Ui ), then the output field associated with the input Ui — o) is given by Uu(p2 — fo)
for any two-dimensional position vector fy. This property follows from the invariance of the
Helmholtz equation under coordinate displacements of the form 7 — 7 — .

Similar to the time-invariant linear system case [cf. Eq. (13.6)], the output field of a shift-
invariant linear system can be related to the input field via the two-dimensional convolution
integral

Upn) = [ dpli(p e~ ). (13.9)

13.4



Here djy is an area element in the = = 0 plane given hy
dpy = dxy dyy (13.10)

and the limits (—co, ) indicate a double integral, i.e.,

j::dﬁl sf_:dxlj_idm. (13.11)

In Eq. (13.9), h{p2 — 1) represents the impulse response of the system. An impulse is the
field whose value is nonzero only at a point, say gy in the input plane. It is represented
by a 2-dimensional Dirac delta function {5 — o). Substituting in (13.9), we see that for
ilpr) = 8(p1 = po). Uslpa) = hip2 — fio), identifying h{p2 — p,) 1o be the impulse response
of the shift-invariant linear system. An impulse corresponds to a point source located in the
input plane.

In the next Lecture, we will introduce the concepts of 2-dimensional spatial Fourier

transforms and obtain a spatial frequency domain solution similar to Eq. {13.8).

=



NORTHWESTERN UNIVERSITY

Department of Electrical Engineering and Computer Science

Lecture 14 - EECS 379
SPATIAL FOURIER TRANSFORMS AND PLANE WAVES

Reading Assignment: GOODMAN - Secs. 2.1 and 2.2.

14.1 Need for Spatial Fourier Transforms

The convolution integral (13.9), relating the output feld [/.(5;) of a shift-invariant linear
system to its input field Ui{5), is difficult to evaluate in general for an arbitrary Ui(5). In
many cases. the output field can be caleulated much more easily by working in the Fourier
domain. Similar is the case with time-invariant linear svstems as pointed out in the previous
lecture [cf. Eqs. (13.6)-(13.8)]. To present the Fourier domain method we first need to
introduce spatial Fourier transforms. Since the input and output fields are described by

2-dimensional functions, we will need to consider 2-dimensional Fourier transforms.

14.2 2-Dimensional Spatial Fourier Transforms

The spatial Fourier transform of a 2-dimensional function {/{5) is defined as:

0 = [ dpUp) expl=i2x -5, (14.1)

where the double integral is given by Eq. {13.11), and f.u'(}') = (_![f,,f,} is a 2-dimensional
complex function of the spatial frequency f = (f.. f,) which is itself a 2-dimensional vector
in the spatial frequency domain. Since exp(—j2x f.5) = exp|—j2n(fox + fyy)], the above
definition is equivalent to the usual Fourier transformation of U(j) = U{z,y) first with
respect to @ and then with respect to y {or vice versa). U(5) can be recovered from U(f) by

the inverse Fourier transformation process which is defined via
Uip) = [ dF 0L expti2ef 7). (14.2)
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where, similar to Eq. (13.11), the spatial-frequency domain double integral is given by

j_idjsj: df,j::df,‘ (14.3)

In Homewaork No. 4 we will evaluate spatial Fourier transforms of some simple functions

which will commonly occur in the remainder of this course.

Parseval’s Theorem: Using Eqs. (14.1), (14.2), and the fact that LF.T.{exp(—j27f -
@)} = 8(p ~ '), where LF.T. stands for inverse Fourier transform (cf. Homework No. 4,

Problem No. 1b), it is easily proven that

&=

= aniie = [ e (144)

The above equation is a stat of the 2-di ional Parseval’s Theorem.

To simplify the notation, in future we will suppress the overbar on the limits of double

integrals. For example, the left member of (14.3) will simply be written as 5. df.
14.3 Fourier Domain Propagation Problem

Armed with the definitions of 2-dimensional Fourier Transforms, the Fourier domain equiv-
alent of (13.9} is readily evaluated. Using (14.1) and substituting (13.9], we have
P = R T
Ulh) = [ dpaUsin) expl~j2x] - o)
-
== sl R =
= [ dn [ dn Utpdbin - i) expl=i2e] - o).
- —-—
Changing the order of the double integrals and substituting 5 = p2—f in the ahove equation
. a2 & -
ih = [ dptita) [ dorhign - ) expl=i2nf - )
— -
= ol -
f_.,., Ay Uil ) f_*d’ﬁ h(p) exp(—j2x f - pexp(—j2n f - py)

h(F) O F)- {14.5)

Here the spatial transfer function h( f) is the Fourier transform of the spatial impulse response
function h(a). Both A{[) and A(3) will be evaluated for (ree-space propagation in the next
lecture. Physically. k{ f) represeuts the amplitude and phase response of the shift-invariant

linear system to a complex sinusoid exp(j2x f - 7) representing a spatially periodic input.
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14.4 Simple Solutions of the Helmholtz Equation

The Helmholtz equation (13.3) possesses some simple solutions with clear physical inter-
pretations from which more complicated solutions, commensurate with the given boundary
conditions, can be constructed with use of the superposition principal. Before constructing

a general solution, let us review a couple of these simple solutions.

14.4.1 Spherical Waves

The normalized complex envelope [7(7) of a spherical wave can be written as

Uexp(:l:jHF — Fal)

|7 = 7ol

r) = (14.8)

with the + sign representing a diverging spherical wave centered al 7y and the — sign
describing a spherical wave converging towards 7. These are called spherical waves because
the surfaces of constant phase are spheres which expand outwards from 7y in the former case
and inwards towards fy in the latter. This can be shown easily by writing the full spatio-
temporal dependence of the real-valued electric field u(7, t) associated with these waves.
Substituting Eq. (14.6) in Eq. {13.1). we obtain

I

ul{f. t) = F=ral

cos[2rult F |f — ol /c) - @], (14.7)

where U/ = |Ul|exp{j¢). Clearly, as ¢t increases, |7 — fgl/c must increase (for the — sign
corresponding to the diverging wave. for example) by the same amount in order for the
argument of the cosine function to stay the same (fixed phase). The loci of points 7 for which
|F — falfe = t, a constant at a given {, is a spheve of radius ct centered at 5. Figure 14.1
shows the cross-section of a diverging spherical wave in the x-z plane. From Eq. (14.6), the
intensity of the spherical wave

LS

| = Fof?

) = VAP = (14.8)

lollows an inverse square law. An isotropic peint source of geometrical optics located at 7y

emits diverging spherical waves in the physical-optic deseription.
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Figure 14.1: Cross-section of a diverging spherical wave.

An impulse [78(F, — fo) can be realized by positioning a point source of amplitude I at
1 = fo in the input plane (z = 0) of an optical system. We assume free space here but it can
be any complex system including lenses etc. It will emit spherical waves whose wavefronts
at z = L in our system notation can be written as

U(p) = [;"7""[;’“_!’;:' ol)

expljky/(22 — %0)? + (¥2 — 0)7 + 2%)

ylra = o) + (12 ~ yo)? + 2
pepUkzyl + |72 = pol*/?)

U+ 1= Aol /=2

Many practical situations of interest are pararial in nature. In such situations we are inter-

= fr

(14.9)

ested in the field near the optical axis for which |3, — jo| € z. That is, compared to the
propagation distance of interest, the transverse location of observation point jfy is not far

from that of the source point gg. Under this condition, the spherical wavefronts (14.9} can

be approximated as
',_,C‘XPU'&: 1L+ 52 — pol?/=?)

=1+ 152 — pol?/=2
-explgks)

Us(fiz)

expljk|pz = po|*/22). {14.10}
We will use this approximate form of spherical waves to interpret the impulse response
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function A(7) for [ree-space propagation.

14.4.2 Plane Waves

Monochromatic plane waves, which were introduced in Lecture 2, can be generalized to
include evanescent waves {cf. Sec. 3.4). In the normalized scalar-wave notation, a uniform

plane wave with wavevector £ = k1 is represented hy

UF) = Uexp(jk - 7) (14.11)
with B2 = k- % = (2rv/e)? and [7 = |U] exp(jé).
Propagating Waves: When the components k,, ky, and k. of F are all real, then (14.11)

represents a propagating uniform plane wave because the associated real-valued electric field

u(F. ) takes the following form:
u(F, t) = |U] cos[2mu{t — 7 - iy fe) — 9], (14.12)
showing that the surfaces of constant phase are planes L to iy Note that at z =0
UF) = Lie,y. 2 = 0) = Dexp(kor + kyy) {14.13)
and kI + &2 < (2mw/e)t.
Evanescent Waves: In the [/(7) of a plane wave given by {14.11), it is possible that

k2 + k2 > (2mp/e)?. Because k% + k2 4+ k! = k-k = (27p/c)?, this condition implies that

k2 < 0 or that k. is imaginary. Writing k. = jik.|, /(F) of Eq. (14.11) then becomes
U(F) = U expljlkzr + kyy)] exp(—|k:|z), (14.14)

where

[k = y2mufe)? — k2 — k3. (14.15)

The wave described by Eq. {(14.14) is calied an evanescent wave because it is attenuated for

= > 0 with an attenuation constant |k.] given hv {14.15). However note that at = = 0, the
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complex field envelopes U(7) of both the propagating wave [Eq. (14.11)] and the evanescent
wave [Eq. (14.14)] ave the same. We will use this fact in the next lecture to derive the general
solution of the propagation problem. Finally, the real-valued electric field associated with
an evanescent plane wave is given by

= 4) — T _ _kr;+klr5' _ '
u(F, t) = [U|exp(=|k:|z) cos[2ru(t 5 )= ¢l (14.16)

In the next lecture, we will solve the propagation problem and obtain expressions for h(j)

and h(f).

I |

-9

. |



NORTHWESTERN UNIVERSITY

Department of Electrical Engineering and Computer Science

Lecture 15 - EECS 379
FRESNEL DIFFRACTION

Reading Assignment: GOODMAN - Secs. 3.7 and 4.1.

15.1 Solution of the Propagation Problem

In Lectures 13 and 14, we have defined the [ree-space propagation problem and developed
the methodology that is needed to obtain its solution. We note that our method is not
unique; in fact, there are many other ways of solving this problem. Goodman, for example,
solves it via a Green’s function approach {see Secs. 3.1 through 3.4 of Goodman) that is
more suited for physicists whereas our approach appeals more to electrical engineers who
are well versed in linear system theorv. In summary, we are given the field /;(5,) at z =0
which is propagating nominally along the +z direction and we need to find the field Us(pa)
in the : = L plane as shown schematically in Fig. 15.1.

Using the inverse Fourier transform relation (14.2), we can write the input field /{5 as

Utp) = [ dFOf) explizef - . (15.)

V2U(p) + k2U(p) =0

1 I

Ll 1
b : : e
-, ! ' -
Up(p) 1 K=(@rvip Y

I: Free Space i

' |

z=0 z=L

Figure 15.1: Spatial Propagation Schemalic.
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which can be thought of as a superposition of various plane waves
Ui f) expli2nf - i) (15.2)

in the z = ( plane. Comparing the above expression with Eq. (14.11), we can identify the

wavevectors of the plane waves entering Eq. (15.1) as follows:

(rfe2nfy2mfWf P == 7). Ifi<1/A

ko= ke, by, k) = (15.3)
(orfeamf 20 T4 T = (WIeF) . IF1> 1
where k. is obtained using the dispersion relation (2rv/c)* = k2 + k2 + k? because both
Eqgs, (14.11) and (15.2) do nol involve =. The dispersion relation must always be satisfied by
monochromatic light. Also since we assumed that the input is propagating nominally along
the +z direction, we have chosen a positive sign for k.. When |f| < 1/), the identification
of (15.2) is with a propagating plane wave because k,, k,, and k. are all real; whereas when
|f] > 1/, the expression {15.2) represents an evanescent plane wave because k, is imaginary.
Furthermore, that the identification of k is correct is guaranteed by the uniqueness theorem.
Now that we have identified the wavevectors of the various plane waves constituting
£y}, we can find U(pa) by evaluating each of the component plane waves at z = L. For
example, the plane wave which at = = 0 is given hy (15.2) takes the following form at = = L
[ef. Eq. (13.5)):

Ui f) explilhezs + kyyz + kz))ear

Ui F) expli(2m frzz + 25 fya)) exp(jk. L)
exp (jELYT=INJI) . 171 1/A

O F) explj2xf - i) = (15.4)
exp (~kLyIRFE= 1), 171> 1/

where we have used Eq. (15.3). Summing over all the component plane waves at z = [, we

get

exp (;’k.‘.,,ﬁl - IJ«fl’). [Afl <1
exp (=hLyITE=1), Ml > 1

Ui = [ dfify explizef - i) x

A ]



= [T T iR explje] - 72, (15.5)

where

e (JELYT-DTE), i<
exp (-—ki.\ji.\fl?— 1) L, JAf > 1.

Equation (15.5) is in the form of an inverse Fourier transform giving the following Fourier

(15.6)

transform of the output field:

Uo(f) = AT {15.7)
with A(f) given by (15.6). Thus. we have solved the propagation problem in the spatial
Fourier transform domain. Free-space propagation is equivalent to a shift-invariant linear

system whose spatial-frequency response is given by the transfer function ?l( ) of Eq. (15.6).
15.2 Paraxial Approximation

From Eq. (14.4), the spatial impulse response function A(j) is the inverse Fourier transform
of the spatial transfer function &( ). It is difficult to evaluate the former in general because
of the discontinuity in the latter at || = 1/A. However. in most practical situations, the
evanescent waves, which do not carry any power in the +: direction, are of no interest.
Moreover, in many applications such as: i) optical communications where U;(7) is the field
emitted by the transmitter and [/,{;) is that incident on the receiver, i} coherent imaging
where Ui{p1) is the source field and {7,(py) is the image feld, iii) optical signal processing
where Ui(#) is the input signal to the optical processor and {/,{p,) is the corresponding
output; Ui ) is such that the corresponding Fourier function [7( f} is bounded from above
at a spatial frequency |flmax = fo which is much less than 1/A, e, {0 f)] = 0 for |f] >
fo € 1/A. From Parseval's theorem [cf. Eq. (14.4)], the input power P; is then carried by

spatial frequencies whose magnitudes are much smaller than 1/A:

P

il

S ear day
”‘Ir'e'A, it tPri -
[iuprai= [ iopidr. (158)
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Under these circumstances, i.e.. when A flmax < 1. we can approximate h( ) of {15.6) by

R(f)

12

esp [i6E (1 - W77)"|
exp [ikL (1= \f1/2)]
exp(jkL) exp (~iALIFP), (15.9)

14

where first we have thrown away the evanescent part, and second, kept only the first two

terms in the Taylor series expansion of the

P - This is known as the parazial approzi-
mation and is very accurate in the examples cited above. Under this approximation, the free-
space transfer function is a simple Gaussian function of spatial frequency. From Eq. (15.3),
fe= x,*’.?r and f, = k, /2%, implving that |Af] < 1 is equivalent to |k, | < 2x/4 = k where
ko= {k, ky,0) is the component of & perpendicular to =. Thus the paraxial approxima-
Lion, as the name justifies, has the following physical interpretation: The plane waves that

constitute [(f1) are all such that they propagate almost along the +z direction.

15.3 Spatial Impulse Response Function

Under paraxial approximation, using Eq. (15.9)

wp) = [ dfidfrewiaai )
[ 4 explikL) exp (=imALUPR) expls2n - )

kL .
?% exp (jkIaE/2L) (15.10)

Here, the last equality is obtained via the following Fourier transform relationship for 2-

dimensional Gaussians (cf. Honework No. 5. Problem No. 1):

F.T,{&[;%} = exp [—(2rv)? 12/2) {15.11)

for Re(v?) = 0. Thus, we have shown that under paraxial approximation, the free-space
propagation problem is equivalent to a shift-invariant linear system whose impulse response

is given by h{p) of Eq. (15.10).
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[n physical optics. an impulse is nothing but 2 point source located in the input plane.

In Sec. (14.4.1], we saw that such a point source emits spherical waves whose wavefronts,

L

Tl

under paraxial conditions, are given by Eq. (14.10). Comparing Eq. (15.10} with (14.10), we
see that h(p) is nothing but a description of how spherical waves pass through the optical
system. The two equations are identical if the amplitude /(5 ) of the input spherical waves
n (14.10) is taken to be (—=j/A)Ui(p) [cf. Eq. (15.12) below].

15.4 Space-Domain Solution of the Propagation Problem

Substituting h(7} of Eq. {15.10) into Eq. (13.9), we obtain

Udpa) = [ dpiUip) bip = 1)
= f dpy U; {p.}ewuk” exp (jklp — ml*/2L)
xpljkL .
= SO [ dn g e (e - P2L). (1512

which is known as the Fresnel diffretion formula. It gives, under paraxial approximation,
the output field 7,{52) in terms of the input field [7;{5,) as a 2-dimensional integral over the
input plane.

In the next lecture, we will study Gaussian beams of light which maintain their form

under Fresnel diffraction (paraxial propagation).



NORTHWESTERN UNIVERSITY
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EXAMPLE OF FRESNEL DIFFRACTION: GAUSSIAN BEAMS OF LIGHT

Reading Assignment: YARIV - Secs. 24 and 2.5.
16.1 Gaussian Beams

The idealized theory of a generic |laser that we developed in Lectures 7 and § was based on
plane waves. The resulting output is also a plane wave apertured by the output mirror. Real
lasers, however, do not emit plane waves: the output of most lasers are Gaussian beams of
light. [n the normalized scalar-wave notation, the spatial profile of the complex envelope of

a monochromatic Gaussian beam propagating along the +z direction can be written as:

LUty = U(p) expljk=z) (16.1)
with
_ Py I
U(p) =[5 exeliklal"/2). (16.2)

Here g is & complex beam parameter that describes the phase radius of curvature & and the

iutensity radius a of the Gaussian heam via

1 1
E=ﬁ+$' (16.3)

In general, both a and R, and hence ¢, are [unctions of z.
Taking the modulus square of Eq. (16.2) and using (16.3), the spatial profile of the

intensity of the Gaussian beam is given by

. P, s
@) = |C(p)ft = 7:2 exp(—|al*/a?). (16.4)
which is a 2-dimensional Gaussian in & and y. thus justifving the name for these beams. In

Fig. 16.1. we have plotted the intensity variation along the r direction. Because Eq. (16.4)
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Figure 16.1: Intensity profile of a Gaussian beam.

is radially symmetric, similar intensity variation occurs along any radial direction in the z-y
plane. Also the intensity at || = « drops to ™" of its peak value at || = 0. Therefore, we
call a to be the intensity radius of the Gaussian beam. Integrating I{5) over the z-y plane,
we get

" Horip= [ dp 2 expi—ipt/at) = P, (16.5)
which identifies P, to be the total power transported by the Gaussian beam in the +z
direction. Substituting (16.2) and{16.3) in (16.1}), we see that the phase part of U{F) is
given by

expl k1712 /2R) expljk=).

The above expression is of the same form as the phase part of a spherical wave in the paraxial

limit [cf. Eq. (14.10)]. Comparing the two we identify R to be the radius of curvature of the

spherical wavelronts associated with the Gaussian beam.

16.2 Free-Space Propagation of Gaussian Beams

It can be shown by direct substitution that a Gaussian beam (16.2) satisfies the Fresnel
diffraction formula (15.12) derived in the previous Lecture. We will leave the proof as a
liomework excecise. Here we tackle the problem of free-space Gaussian-beam propagation in

the spatial-frequency domain using the transfer function approach, Specifically, we need to
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find the output field U,(3;) at = = L for an input field [5(5;) describing a Gaussian beam

at z = 0. Writing ¢(z = 0) as qo and a(z = 0) as aq, from Eq. {16.2) we have

Ui = \/% explikli [ /220). (16.6)

whose Fourier transform is also a Gaussian in the spatial-frequency domain. It is easily

oblained using formula (15.11) to be

uh

j_ Z dpn \/Pu/a} exp(ikif/200) exp(—j2 - pu)
vV P./mad jAge exp(~jxAgol 7). (16.7)

The Fourier transform of the output field is obtained from that of the input by multiplying
the latter with the free-space spatial transfer function A(F) [cf. Egs. (14.5) and {15.7)). A(f)

was derived under the paraxial approximation in Eq. (15.9) and is given by
k() = exp(jkL) exp(—jmAL|fI") (16.8)
for L meters of propagation. Substituting {16.7) and (16.8) in (15.7), we get
0if)y = DU ,
VP/7a} jAao explkL) expl=jxAgo + L)IFT’

VESTELS

where in the last equality we have multiplied the numerator and the denominator by {go+L).

g SPURL) jMao + L) exp(—jzMgo + LIFF,  (169)

The above equation is of the same form as the Fourier transform of the input field. In
analogy with the Fourier transforin pair {16.6) and (16.7), we can immediately write the

inverse Fourier transform of [7,{ [} as

Udpr) = \P/rag T explikL) explikipal®/2g0 + L))

Jo
= VR/rad 5 expUkL) expljkiaal*/20( L), (16.10)
where
W) =qo+ L. (16.11)
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Thus we see that under paraxial propagation, a Gaussian beam maintains its form. It stays
as a (Gaussian beam except that its ¢ parameter changes according to Eq. (16.11). This
result is a direct conseq of the Gaussian structure of the free-space transfer function

h(f) under the paraxial condition.

Equation (16.11) describes how the phase radius of curvature R and the intensity radius
a of the Gaussian beam change as it propagates through free space. Using (16.3), Eq. (16.11)
can be decomposed into equations for a{L) and R(L) as follows:

R I SN SN S S S
a(L) ~ R(L) " ka*(L) q+L qo l+L/q
1/ Ao + j/kal

(L+ L/Ro) + jL[ka}"
Comparing the real and imaginary parts on both sides of the above equation, we immediately

abtain
|(] + LJ!RQ}Z +nEJ]
R(Ly = b
) [(L+ L/Ro)L/ By + Q7" (16.12)
a(L) = agf(l+LfRe)® + Q723 (16.19)

where Q; = ka§/L is a dimensionless parameter. Thus, we see that both the phase radius
of curvature R and the intensity radius a vary in a complicated way as the Gaussian beam
propagates through [ree space. In the next lecture, we will examine their behavior in some
detail for a couple of scenarios that commonly arise in the laboratory. Alse, we will describe
the physical significance of the dimensionless parameter Q7.

Let us now go back to Eq. (16.10) and simplify the expression for [/,(5;). Once again

Go/q( L) can be simplified by decomposing it into an amplitude and a phase part. Using (16.3}

G _ 1 _ 1
gw+L  V+Lfeg (L +L{Re)+ jL/kal
= (14 L/Ro)* + 077" exp[jO(L))], (16.14)
where
(L) = ~ tan= [—2L__ 16.15
(L)= HUROI- (16.15)
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