π
<-

Correction algo Olympiades Académiques 2013 1ère Besançon

Toutes les news concernant les examens (BAC, DNB, etc.) et concours scolaires

Correction algo Olympiades Académiques 2013 1ère Besançon

Unread postby critor » 02 May 2013, 17:05

Après l'algorithme des Olympiades Académiques 2013 d'Aix-Marseille dans une news précédente, intéressons-nous maintenant à l'algorithme tombé dans l'Académie de Besançon.






Question I)2):
On nous donne donc un algorithme à trous, destiné à calculer σ(n) pour tout entier naturel n non nul, où σ(n) est la somme de tous les diviseurs de n.

Lorsque le test "le reste de la division euclidienne de n par k est 0" est vérifié, cela veut dire que k est un diviseur de n.
Il faut donc l'ajouter à la somme des diviseurs déjà trouvée.
Il nous faut donc une variable pour cumuler les diviseurs trouvés au fur et à mesure, et c'est la variable σ initialisée à 0, élément neutre de l'addition, qui joue ici ce rôle.
(si on avait du multiplier les valeurs trouvées au lieu de les additionner, on aurait initialisé la variable à 1, élément neutre de la multiplication)
La dernière instruction manquante sera donc "Affecter à σ la valeur σ+k".

Ce test peut être écrit mathématiquement en utilisant la fonction partie entière E introduite en début de Première S.
On peut alors le récrire par exemple "E(n/k)=n/k".

Enfin, k jouant le rôle des diviseurs de n recherchés, on a 1≤k≤n, ce qui nous permet de compléter les bornes de la boucle 'pour':
"Pour k allant de 1 à n faire"

L'algorithme une fois complété nous donne donc:
Code: Select all
Entrée:
   n entier naturel non nul
Initialisation:
   σ prend la valeur 0
Traitement:
   Pour k allant de 1 à n faire
      Si E(n/k)=n/k alors
         Affecter à σ la valeur σ+k
      FinSi
   FinPour
   Afficher σ


L'on traduit aisément l'algorithme en un programme pour nos TI-82 à TI-84:
Image


Il est alors aisé de vérifier le résultat de la question I)1) précédente: σ(350)=744
Image


Voici le programme pour Casio Graph/Prizm:
ImageImage


Et voici maintenant le programme pour TI-Nspire:
Image


Une fois le programme fonctionnel, il est alors aisé et rapide de déterminer quelques valeurs de σ(n), ce qui va être utile pour les quelques exemples demandés par les questions suivantes! :bj:



Question II)1)
Il nous faut donc déterminer justement σ(n) pour n allant de 1 à 6.
Le programme nous répond rapidement que σ(1)=1, σ(2)=3, σ(3)=4, σ(4)=7, σ(5)=6 et σ(6)=12.



Image

Question III)3)a)
Sachant qu'un nombre parfait n vérifie σ(n)=2n, il suffit de faire calculer quelques valeurs supplémentaires au programme:
Image

On vérifie alors aisément dans la liste des résultats qu'avec σ(6)=12, 6 est le seul nombre parfait inférieur ou égal à 10.



Image

Question III)5)a)
Sachant qu'un nombre presque parfait n vérifie σ(n)=2n-1, on obtient rapidement de façon similaire que les seuls nombres presque parfaits inférieurs ou égaux à 16 sont 1, 2, 4, 8 et 16 avec σ(1)=1, σ(2)=3, σ(4)=7, σ(8)=15 et σ(16)=31.
Tiens, ne seraient-ce pas les puissances de 2?... ;)



Envie de faire un peu plus d'arithmétique et d'algorithmique? Pour une petite 10aine de jours, nous avons encore un concours sur les nombres premiers palindromes! ;)
Image




Lien:
Olympiades Académiques de Mathématiques 2013 - 1ère (Besançon)
Image
User avatar
critorAdmin
Niveau 19: CU (Créateur Universel)
Niveau 19: CU (Créateur Universel)
Level up: 48%
 
Posts: 41987
Images: 15891
Joined: 25 Oct 2008, 00:00
Location: Montpellier
Gender: Male
Calculator(s):
MyCalcs profile
YouTube: critor3000
Twitter: critor2000
GitHub: critor

Re: Correction algo Olympiades Académiques 2013 1ère Besanço

Unread postby critor » 02 May 2013, 17:33

On sort du cadre du sujet, mais je souhaite présenter une optimisation.

Dans l'algorithme ci-dessus, nous avons donc un algorithme constitué d'une boucle "pour k allant de 1 à n", permettant de chercher tous les diviseurs de n, donc entre 1 et n.

Le nombre d'opérations effectué par l'algorithme est donc en gros de l'ordre d'un multiple de n (n passages dans la boucle 'pour').
On dit qu'il s'agit d'un algorithme linéaire, ou encore que sa complexité est en o(n).
Sa durée d'exécution sur machine sera grosso modo proportionnelle à n.

Mais lorsque l'on trouve un nombre k diviseur de n, on trouve en même temps un deuxième diviseur: n/k qui lui aussi divise n! :o
(à condition bien sûr que n/k≠k).
  • Par exemple, k=1 est un diviseur de n. Cela implique que n/k=n/1=n est aussi un diviseur de n.
  • Par exemple, k=2 est un diviseur de n=128. Cela implique que n/k=128/2=64 est aussi un diviseur de n=128

L'on pourrait donc ajouter simultanément ces deux diviseurs au lieu d'attendre de retrouver le deuxième plus tard.

Dans ce cas, les diviseurs k à chercher seront compris entre 1 et √n, les n/k prenant alors automatiquement les valeurs des diviseurs entre √n et n.
Ceci nous permet de passer la complexité de l'algorithme en o(√n), grosse amélioration puisque c'est désormais mieux qu'un algorithme linéaire: plus on augmente la valeur de n et moins l'algorithme aura besoin de temps supplémentaire! :bj:

Voici l'algorithme amélioré pour TI-Nspire, qui nous redonne bien les mêmes résultats:
Image
Image
User avatar
critorAdmin
Niveau 19: CU (Créateur Universel)
Niveau 19: CU (Créateur Universel)
Level up: 48%
 
Posts: 41987
Images: 15891
Joined: 25 Oct 2008, 00:00
Location: Montpellier
Gender: Male
Calculator(s):
MyCalcs profile
YouTube: critor3000
Twitter: critor2000
GitHub: critor


Return to News Examens / Concours

Who is online

Users browsing this forum: No registered users and 7 guests

-
Search
-
Social TI-Planet
-
Featured topics
Comparaisons des meilleurs prix pour acheter sa calculatrice !
"1 calculatrice pour tous", le programme solidaire de Texas Instruments. Reçois gratuitement et sans aucune obligation d'achat, 5 calculatrices couleur programmables en Python à donner aux élèves les plus nécessiteux de ton lycée. Tu peux recevoir au choix 5 TI-82 Advanced Edition Python ou bien 5 TI-83 Premium CE Edition Python.
Enseignant(e), reçois gratuitement 1 exemplaire de test de la TI-82 Advanced Edition Python. À demander d'ici le 31 décembre 2024.
Aidez la communauté à documenter les révisions matérielles en listant vos calculatrices graphiques !
1234
-
Donations / Premium
For more contests, prizes, reviews, helping us pay the server and domains...
Donate
Discover the the advantages of a donor account !
JoinRejoignez the donors and/or premium!les donateurs et/ou premium !


Partner and ad
Notre partenaire Jarrety Calculatrices à acheter chez Calcuso
-
Stats.
807 utilisateurs:
>749 invités
>50 membres
>8 robots
Record simultané (sur 6 mois):
6892 utilisateurs (le 07/06/2017)
-
Other interesting websites
Texas Instruments Education
Global | France
 (English / Français)
Banque de programmes TI
ticalc.org
 (English)
La communauté TI-82
tout82.free.fr
 (Français)